scholarly journals Oscillations Governed by the Incoherent Dynamics in Necroptotic Signaling

2021 ◽  
Vol 9 ◽  
Author(s):  
Fei Xu ◽  
Zhiyong Yin ◽  
Ligang Zhu ◽  
Jun Jin ◽  
Qingzhu He ◽  
...  

Emerging evidences have suggested that oscillation is important for the induction of cell death. However, whether and how oscillation behavior is involved and required for necroptosis remain elusive. To address this question, a minimal necroptotic circuit is proposed based on the CNS pathway. Stochastic parameter analysis demonstrates that the essential structure for oscillation of the CNS circuit is constituted by a paradoxical component embedded with positive feedback among the three protein nodes, i.e., RIP1, caspase-8, and RIP3. Distribution characteristics of all parameters in the CNS circuit with stable oscillation are investigated as well, and a unidirectional bias with fast and slow dynamics that are required for high occurrence probability of oscillation is identified. Four types of oscillation behaviors are classified and their robustness is further explored, implying that the fast oscillation behavior is more robust than the slow behavior. In addition, bifurcation analysis and landscape approach are employed to study stochastic dynamics and global stability of the circuit oscillations, revealing the possible switching strategies among different behaviors. Taken together, our study provides a natural and physical bases for understanding the occurrence of oscillations in the necroptotic network, advancing our knowledge of oscillations in regulating the various cell death signaling.

Author(s):  
Bazhena Bahatyrevich-Kharitonik ◽  
Rafael Medina-Guzman ◽  
Alicia Flores-Cortes ◽  
Marta García-Cruzado ◽  
Edel Kavanagh ◽  
...  

Cell death related (CDR) proteins are a diverse group of proteins whose original function was ascribed to apoptotic cell death signaling. Recently, descriptions of non-apoptotic functions for CDR proteins have increased. In this minireview, we comment on recent studies of CDR proteins outside the field of apoptosis in the CNS, encompassing areas such as the inflammasome and non-apoptotic cell death, cytoskeleton reorganization, synaptic plasticity, mitophagy, neurodegeneration and calcium signaling among others. Furthermore, we discuss the evolution of proteomic techniques used to predict caspase substrates that could potentially explain their non-apoptotic roles. Finally, we address new concepts in the field of non-apoptotic functions of CDR proteins that require further research such the effect of sexual dimorphism on non-apoptotic CDR protein function and the emergence of zymogen-specific caspase functions.


2018 ◽  
Author(s):  
Dustin Lane

Programmed cell death signaling networks are frequently activated to coordinate the process of cell differentiation, and a variety of apoptotic events can mediate the process. This can include the ligation of death receptors, the activation of downstream caspases, and the induction of chromatin fragmentation, and all of these events can occur without downstream induction of death. Importantly, regulators of programmed cell death also have established roles in mediating differentiation. This review will provide an overview of apoptosis and its regulation by Inhibitors of Apoptosis (IAPs) and Bcl-2 family members. It will then outline the cross-talk between NF-ĸB and apoptotic signaling in the regulation of apoptosis before discussing the function of these regulators in the control of cell differentiation. It will end on a discussion of how a DNA damage-directed, cell cycle-dependent differentiation program may be controlled across multiple passages through cell cycle, and will assert that the failure to properly differentiate is the underlying cause of cancer.


2006 ◽  
Vol 103 (11) ◽  
pp. 4128-4133 ◽  
Author(s):  
C. Furne ◽  
V. Corset ◽  
Z. Herincs ◽  
N. Cahuzac ◽  
A.-O. Hueber ◽  
...  

Author(s):  
Elham Moradi ◽  
Parvaneh Naserzadeh ◽  
Peiman Brouki Millan ◽  
Behnaz Ashtari

Abstract The cytotoxicity of diamond nanoparticles (DNs) to various cell lines has been on focus by numerous scientists. The cellular toxicity system of DNs has not been fully understood or explained in skin cancer, at this point. This research was carried out to discover and reveal the potential impacts of DNs on the secluded brain, heart, liver, kidney, and skin in addition to evaluation of their cytotoxicity mechanism under test conditions. Their biological activities, for example cell viability, the level of reactive oxygen species (ROS), lipid peroxidation, cytochrome c release and Apoptosis/Necrosis were evaluated. Additionally, the bio-distribution of these nanomaterials in tissues was examined in the C57 mouse. Relying on the findings of the investigation, DNs were found to increase the ROS level, MDA content, release of cytochrome c, and cell death in skin significantly compared to other groups. In the C57 mouse, DNs were observed to have accumulated in skin tissue more intensively than they did in other organs. The present study presents for the the proof that DNs can completely induce cell death signaling in skin cancer without bringing about a high cytotoxicity in other tissues. Results suggest that DNs can be valuable in recognition of skin cancer.


2019 ◽  
Vol 316 (6) ◽  
pp. H1237-H1252 ◽  
Author(s):  
Sumit Kar ◽  
Tyler N. Kambis ◽  
Paras K. Mishra

The death of cardiomyocytes is a precursor for the cascade of hypertrophic and fibrotic remodeling that leads to cardiomyopathy. In diabetes mellitus (DM), the metabolic environment of hyperglycemia, hyperlipidemia, and oxidative stress causes cardiomyocyte cell death, leading to diabetic cardiomyopathy (DMCM), an independent cause of heart failure. Understanding the roles of the cell death signaling pathways involved in the development of cardiomyopathies is crucial to the discovery of novel targeted therapeutics and biomarkers for DMCM. Recent evidence suggests that hydrogen sulfide (H2S), an endogenous gaseous molecule, has cardioprotective effects against cell death. However, very little is known about signaling by which H2S and its downstream targets regulate myocardial cell death in the DM heart. This review focuses on H2S in the signaling of apoptotic, autophagic, necroptotic, and pyroptotic cell death in DMCM and other cardiomyopathies, abnormalities in H2S synthesis in DM, and potential H2S-based therapeutic strategies to mitigate myocardial cell death to ameliorate DMCM.


Sign in / Sign up

Export Citation Format

Share Document