scholarly journals Heart Rate and Cardiovascular Responses to Commercial Flights: Relationships with Physical Fitness

2016 ◽  
Vol 7 ◽  
Author(s):  
Iransé Oliveira-Silva ◽  
Anthony S. Leicht ◽  
Milton R. Moraes ◽  
Herbert G. Simões ◽  
Sebastián Del Rosso ◽  
...  
Author(s):  
Ewan Thomas ◽  
Marianna Bellafiore ◽  
Ambra Gentile ◽  
Antonio Paoli ◽  
Antonio Palma ◽  
...  

AbstractThe aim of this study will be to review the current body of literature to understand the effects of stretching on the responses of the cardiovascular system. A literature search was performed using the following databases: Scopus, NLM Pubmed and ScienceDirect. Studies regarding the effects of stretching on responses of the cardiovascular system were investigated. Outcomes regarded heart rate(HR), blood pressure, pulse wave velocity (PWV of which baPWV for brachial-ankle and cfPWV for carotid-femoral waveforms), heart rate variability and endothelial vascular function. Subsequently, the effects of each outcome were quantitatively synthetized using meta-analytic synthesis with random-effect models. A total of 16 studies were considered eligible and included in the quantitative synthesis. Groups were also stratified according to cross-sectional or longitudinal stretching interventions. Quality assessment through the NHLBI tools observed a “fair-to-good” quality of the studies. The meta-analytic synthesis showed a significant effect of d=0.38 concerning HR, d=2.04 regarding baPWV and d=0.46 for cfPWV. Stretching significantly reduces arterial stiffness and HR. The qualitative description of the studies was also supported by the meta-analytic synthesis. No adverse effects were reported, after stretching, in patients affected by cardiovascular disease on blood pressure. There is a lack of studies regarding vascular adaptations to stretching.


1963 ◽  
Vol 18 (5) ◽  
pp. 987-990 ◽  
Author(s):  
Shanker Rao

Reports of cardiovascular responses to head-stand posture are lacking in literature. The results of the various responses, respectively, to the supine, erect, and head-stand posture, are as follows: heart rate/min 67, 84, and 69; brachial arterial pressure mm Hg 92, 90, and 108; posterior tibial arterial pressure mm Hg 98, 196, and 10; finger blood flow ml/100 ml min 4.5, 4.4, and 5.2; toe blood flow ml/100 ml min 7.1, 8.1, and 3.4; forehead skin temperature C 34.4, 34.0 and 34.3; dorsum foot skin temperature C 28.6, 28.2, and 28.2. It is inferred that the high-pressure-capacity vessels between the heart level and posterior tibial artery have little nervous control. The high-pressure baroreceptors take active part in postural adjustments of circulation. The blood pressure equating mechanism is not as efficient when vital tissues are pooled with blood as when blood supply to them is reduced. man; heart rate; blood flow; skin temperature Submitted on January 3, 1963


1988 ◽  
Vol 74 (2) ◽  
pp. 107-114
Author(s):  
D. J. Smith ◽  
R. J. Pethybridge ◽  
A Duggan

SummaryThe relationship between physical fitness, anthropometric measures, and the scores in three submaximal step tests have been evaluated in a group of 30 male subjects. Physical fitness was assessed as VO2max measured directly during uphill treadmill running. Each submaximal exercise test was of six minutes duration and the heart rate recorded during the last minute (fH6) constituted the test score. Significant negative correlation coefficients were found between VO2max and each test score while lean body mass, gross body weight and body surface area were allpositively correlated with VO2max (1/min). The score in the least severe step test was included with anthropometric measures in multiple linear regression analysis for the prediction of VO2max and a number of prediction equations were derived. It was found that when lean body mass is calculated from skinfold measurements and weight, VO2max can be calculated from the equation:VO2max(1/min) = 1.470 + 0.0614 × Lean Body mass −0.0131 × fH6This equation accounts for 73% of the total variation of VO2max. If lean body mass cannot be calculated, a combination of gross body weight and age plus fH6 gives the equation:VO2max = 3.614 + 0.0349 × Weight – 0.0177 × fH6−0.0161 × Ageaccounting for 66% of the variance. The test has the following advantages over those currently employed:It is simple to administer requiring 6 minutes of stepping onto a 32 cm platform—the height of a gymnasium bench—20 times per minute.Although ideally an assessment oflean body mass is required, gross body weight plus age is a good second best.It is submaximal, minimising the stress on the individual (mean heart rate achieved 121 beats per minute).Its accuracy in terms of its ability to predict maximal aerobic power is better than either the Ohio or Harvard University tests.It is suggested that this test could be used where maximal testing is contraindicated or where currently used tests are insufficiently accurate.


1980 ◽  
Vol 239 (1) ◽  
pp. R137-R142 ◽  
Author(s):  
J. Ciriello ◽  
F. R. Calaresu

To investigate the role of the paraventricular (PAH) and supraoptic (SON) nuclei in regulation of the cardiovascular system experiments were done in 26 cats anesthetized with alpha-chloralose, paralyzed, and artificially ventilated. Electrical stimulation of histologically verified sites in the region of the PAH and SON elicited increases in arterial pressure in bilaterally vagotomized animals and increases in heart rate both in spinal (C2) animals and in animals bilaterally vagotomized, In addition, stimulation of either the PAH or SON inhibited the reflex vagal bradycardia elicited by stimulation of the carotid sinus nerve (CSN) and bilateral lesions of these areas increased the magnitude of the response. On the other hand, stimulation and lesions of these hypothalamic regions did not alter the magnitude of the cardiovascular responses to stimulation of the aortic depressor nerve. These results demonstrate that stimulation of the PAH and SON elicit cardiovascular responses due to reciprocal changes in activity of the parasympathetic and sympathetic nervous systems and that these structures maintain a tonic inhibitory influence on the heart rate component of the CSN reflex.


2018 ◽  
Vol 3 (4) ◽  
pp. 60 ◽  
Author(s):  
Ramires Tibana ◽  
Nuno de Sousa ◽  
Jonato Prestes ◽  
Fabrício Voltarelli

The aim of this study was to analyze blood lactate concentration (LAC), heart rate (HR), and rating perceived exertion (RPE) during and after shorter and longer duration CrossFit® sessions. Nine men (27.7 ± 3.2 years; 11.3 ± 4.6% body fat percentage and training experience: 41.1 ± 19.6 months) randomly performed two CrossFit® sessions (shorter: ~4 min and longer: 17 min) with a 7-day interval between them. The response of LAC and HR were measured pre, during, immediately after, and 10, 20, and 30 min after the sessions. RPE was measured pre and immediately after sessions. Lactate levels were higher during the recovery of the shorter session as compared with the longer session (shorter: 15.9 ± 2.2 mmol/L/min, longer: 12.6 ± 2.6 mmol/L/min; p = 0.019). There were no significant differences between protocols on HR during (shorter: 176 ± 6 bpm or 91 ± 4% HRmax, longer: 174 ± 3 bpm or 90 ± 3% HRmax, p = 0.387). The LAC was significantly higher throughout the recovery period for both training sessions as compared to pre-exercise. The RPE was increased immediately after both sessions as compared to pre-exercise, while there was no significant difference between them (shorter: 8.7 ± 0.9, longer: 9.6 ± 0.5; p = 0.360). These results demonstrated that both shorter and longer sessions induced elevated cardiovascular responses which met the recommendations for gains in cardiovascular fitness. In addition, both training sessions had a high metabolic and perceptual response, which may not be suitable if performed on consecutive days.


1996 ◽  
Vol 271 (1) ◽  
pp. R73-R83 ◽  
Author(s):  
D. A. Giussani ◽  
R. A. Riquelme ◽  
F. A. Moraga ◽  
H. H. McGarrigle ◽  
C. R. Gaete ◽  
...  

We tested the hypothesis that the llama fetus has a blunted cardiovascular chemoreflex response to hypoxemia by investigating the effects of acute hypoxemia on perfusion pressure, heart rate, and the distribution of the combined ventricular output in 10 chronically instrumented fetal llamas at 0.6-0.7 gestation. Four llama fetuses had the carotid sinus nerves sectioned. In the intact fetuses, there was a marked bradycardia, an increase in perfusion pressure, and a pronounced peripheral vasoconstriction during hypoxemia. These cardiovascular responses during hypoxemia in intact fetuses were accompanied by a pronounced increase in plasma vasopressin, but not in plasma angiotensin II concentrations. Carotid denervation prevented the bradycardia at the onset of hypoxemia, but it did not affect the intense vasoconstriction during hypoxemia. Plasma vasopressin and angiotensin II levels were not measured in carotid-denervated fetuses. Our results do not support the hypothesis that the carotid chemoreflex during hypoxemia is blunted in the llama fetus. However, they emphasize that other mechanisms, such as increased vasopressin concentrations, operate to produce an intense vasoconstriction in hypoxemia. This intense vasoconstriction in the llama fetus during hypoxemia may reflect the influence of chronic exposure to the hypoxia of high altitude on the magnitude and gain of fetal cardiovascular responses to a superimposed acute episode of hypoxemia.


2016 ◽  
Vol 29 (3) ◽  
pp. 543-552
Author(s):  
João Douglas Alves ◽  
Jorge Luiz de Brito Gomes ◽  
Caio Victor Coutinho de Oliveira ◽  
José Victor de Miranda Henriques Alves ◽  
Fabiana Ranielle de Siqueira Nogueira ◽  
...  

Abstract Introduction: Tai-Chi-Chuan and Yoga have becoming popular practices. However is unclear the cardiovascular effects, and if they present similar behavior to aerobic and resistance sessions. Objective: To evaluate the cardiovascular responses during the session and post-exercise hypotension (PEH) of Tai Chi Chuan (TS) and Yoga (YS) in comparison to aerobic (AS) and resistance (SR) exercises. Methods: Fourteen young women (22.3 ± 2 years) apparently healthy performed four sessions (AS, RS, TS and YS). The heart rate (HR), systolic (SBP) and diastolic blood pressure (DBP) were recorded at resting, during (every 10 minutes) and until 50 minutes of recovery. Results: AS, RS, TS e YS showed significant increase in HR compared to resting.AS at 10, 30 e 50 minutes in relation to RS, TS e YS. The RS in relation to TS and YS at 10, 30 and 50 minutes. No significant difference between TS and YS. SBP was significantly increased in AS, RS, TS e YS at 10, 30 e 50 minutes during the session, in relation to rest. AS was significantly higher at 30 e 50 minutes than RS and higher than TS and YS at 10, 30 e 50 minutes. No significant difference in DBP. For PEH, AS, RS and TS significantly reduced at 10, 30 and 50 minutes. YS reduced at 50 minutes. No significant diastolic PEH. Conclusion: TS and YS showed as safe alternatives of exercising in the normotensive young adult woman, despite having lower values, they promote similar hemodynamic behavior to AS and RS.


1993 ◽  
Vol 75 (6) ◽  
pp. 2789-2796 ◽  
Author(s):  
G. A. Fontana ◽  
T. Pantaleo ◽  
F. Bongianni ◽  
F. Cresci ◽  
R. Manconi ◽  
...  

We studied the time course of respiratory and cardiovascular responses by evaluating changes in the breathing pattern, mean blood pressure (MBP), and heart rate elicited by 3 min of static handgrip at 15, 25, and 30% of the maximum voluntary contraction (MVC) in 15 healthy volunteers. Muscle tension and integrated electromyographic activity remained fairly constant during each trial. During 15% MVC bouts, initially only mean inspiratory flow increased; then, tidal volume and minute ventilation (VI) also rose progressively. No significant changes in MBP and heart rate were observed. During 25 and 30% MVC bouts, not only did mean inspiratory flow, VT, and VI increase but MBP and heart rate increased as well. A slight and delayed rise in respiratory rate was also observed. Unlike 15 and 25% MVC handgrip, 30% MVC handgrip caused a small decrease in end-tidal PCO2. Changes in the pattern of breathing occurred more promptly than those in cardiovascular variables in the majority of subjects. Furthermore, we found a positive correlation between changes in VI and those in cardiovascular variables at the end of 25 and 30% MVC trials. This study indicates that respiratory and cardiovascular responses to static handgrip exercise are controlled independently.


1991 ◽  
Vol 261 (3) ◽  
pp. H720-H727 ◽  
Author(s):  
F. L. Belloni ◽  
T. H. Hintze

The effects of the ATP-sensitive K(+)-channel blocker glibenclamide on the cardiovascular responses to adenosine in dogs were determined. Adenosine (0.01-20 mumol/kg iv) caused coronary vasodilatation, arterial hypotension, and bradycardia in dogs with either combined beta-adrenergic and muscarinic receptor blockade or with bilateral cervical vagotomy plus beta-adrenergic receptor blockade. The 50% effective dose for adenosine-induced coronary dilatation was increased from 0.13 +/- 0.04 mumol/kg in the control state to 1.1 +/- 0.5 mumol/kg after 2 mg/kg of glibenclamide (P less than 0.001). Adenosine at 5 mumol/kg reduced heart rate by 19 +/- 5% from a baseline of 158 +/- 6 beats/min in five anesthetized dogs. After glibenclamide (10 mg/kg), this dose of adenosine failed to cause a significant change in heart rate. The arterial hypotensive effects of adenosine were also attenuated by glibenclamide. Thus glibenclamide inhibited adenosine-induced bradycardia, hypotension, and coronary dilatation. On the other hand, glibenclamide did not affect the reductions in heart rate caused by vagus nerve stimulation. The mechanism of this adenosine antagonism is not known but, in the case of bradycardia, it does not appear to involve any of the steps shared in common by both adenosine-induced and vagal responses of the sinoatrial node.


Sign in / Sign up

Export Citation Format

Share Document