Abstract 610: Context-Dependent Effects of Suppressor of Cytokine Signaling 3 (SOCS3) in Angiotensin II-Induced Vascular Dysfunction: Mechanisms and Role of Bone Marrow-Derived Cells

Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Ying Li ◽  
Dale Kinzenbaw ◽  
Mary Modrick ◽  
Lecia Epping ◽  
John T Harty ◽  
...  

Angiotensin II (Ang II) promotes vascular disease and hypertension, in part, by activating the interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) pathway. Although SOCS3 regulates this pathway in the immune system, its role in vascular disease and hypertension is unknown. In this study, we investigated the role of SOCS3 in a model of Ang II-induced vascular disease. To exam direct effects, carotid arteries from wild-type (WT) and SOCS3 haplodeficient (SOCS3 +/- ) mice were incubated with Ang II for 22 hrs, followed by examination of endothelial function using acetylcholine (Ach). Relaxation to Ach was similar in all arteries incubated with vehicle. A low concentration of Ang II (1 nmol/L) did not affect Ach-induced vasodilation in WT mice, but reduced that of SOCS3 +/- mice by ~50% (P<0.05). Ang II-induced impairment was prevented by inhibitors of STAT3, IL-6, NF-κB, or a scavenger of superoxide. Responses to nitroprusside were similar in all groups. We also tested the impact of SOCS3 in vivo by systemically infusing Ang II (1.4 mg/kg per day) for 14 days via osmotic mini-pumps. Ach-induced vasodilation in carotid and resistance arteries in brain from WT mice was reduced by ~60% (P<0.05). Surprisingly, deficiency in SOCS3 prevented the majority of Ang II-induced endothelial dysfunction without affecting the pressor response to Ang II. Lethally irradiated WT mice reconstituted with SOCS3 +/- bone marrow were protected from Ang II-induced endothelial dysfunction (P<0.05), while reconstitution of irradiated SOCS3 +/- mice with WT bone marrow exacerbated Ang II-induced vascular dysfunction (P<0.05). WT into WT and SOCS3 +/- into SOCS3 +/- bone marrow chimeras exhibited vascular function consistent with non-irradiated controls. The pressor response to Ang II was reduced by ~50% in WT mice reconstituted with bone marrow from SOCS3 +/- mice (P<0.05). These data suggest SOCS3 exerts divergent local versus systemic effects on Ang II-induced vascular dysfunction. In the face of SOCS3 deficiency, bone marrow-derived cells protect against Ang II-induced vascular dysfunction and hypertension.

2016 ◽  
Vol 311 (1) ◽  
pp. H146-H156 ◽  
Author(s):  
Ying Li ◽  
Dale A. Kinzenbaw ◽  
Mary L. Modrick ◽  
Lecia L. Pewe ◽  
Frank M. Faraci

Carotid artery disease is a major contributor to stroke and cognitive deficits. Angiotensin II (Ang II) promotes vascular dysfunction and disease through mechanisms that include the IL-6/STAT3 pathway. Here, we investigated the importance of suppressor of cytokine signaling 3 (SOCS3) in models of Ang II-induced vascular dysfunction. We examined direct effects of Ang II on carotid arteries from SOCS3-deficient (SOCS3+/−) mice and wild-type (WT) littermates using organ culture and then tested endothelial function with acetylcholine (ACh). A low concentration of Ang II (1 nmol/l) did not affect ACh-induced vasodilation in WT but reduced that of SOCS3+/−mice by ∼50% ( P < 0.05). In relation to mechanisms, effects of Ang II in SOCS3+/−mice were prevented by inhibitors of STAT3, IL-6, NF-κB, or superoxide. Systemic Ang II (1.4 mg/kg per day for 14 days) also reduced vasodilation to ACh in WT. Surprisingly, SOCS3 deficiency prevented most of the endothelial dysfunction. To examine potential underlying mechanisms, we performed bone marrow transplantation. WT mice reconstituted with SOCS3+/−bone marrow were protected from Ang II-induced endothelial dysfunction, whereas reconstitution of SOCS3+/−mice with WT bone marrow exacerbated Ang II-induced effects. The SOCS3 genotype of bone marrow-derived cells did not influence direct effects of Ang II on vascular function. These data provide new mechanistic insight into the influence of SOCS3 on the vasculature, including divergent effects depending on the source of Ang II. Bone marrow-derived cells deficient in SOCS3 protect against systemic Ang II-induced vascular dysfunction.


2021 ◽  
Vol 12 ◽  
Author(s):  
Camila Manrique-Acevedo ◽  
Jaume Padilla ◽  
Huma Naz ◽  
Makenzie L. Woodford ◽  
Thaysa Ghiarone ◽  
...  

Enhanced mineralocorticoid receptor (MR) signaling is critical to the development of endothelial dysfunction and arterial stiffening. However, there is a lack of knowledge about the role of MR-induced adipose tissue inflammation in the genesis of vascular dysfunction in women. In this study, we hypothesize that MR activation in myeloid cells contributes to angiotensin II (Ang II)-induced aortic stiffening and endothelial dysfunction in females via increased pro-inflammatory (M1) macrophage polarization. Female mice lacking MR in myeloid cells (MyMRKO) were infused with Ang II (500 ng/kg/min) for 4 weeks. This was followed by determinations of aortic stiffness and vasomotor responses, as well as measurements of markers of inflammation and macrophage infiltration/polarization in different adipose tissue compartments. MyMRKO mice were protected against Ang II-induced aortic endothelial stiffening, as assessed via atomic force microscopy in aortic explants, and vasorelaxation dysfunction, as measured by aortic wire myography. In alignment, MyMRKO mice were protected against Ang II-induced macrophage infiltration and M1 polarization in visceral adipose tissue (VAT) and thoracic perivascular adipose tissue (tPVAT). Collectively, this study demonstrates a critical role of MR activation in myeloid cells in the pathogenesis of vascular dysfunction in females associated with pro-inflammatory macrophage polarization in VAT and tPVAT. Our data have potential clinical implications for the prevention and management of cardiovascular disease in women, who are disproportionally at higher risk for poor outcomes.


1993 ◽  
Vol 265 (5) ◽  
pp. R1052-R1059
Author(s):  
L. R. Portis ◽  
S. J. Lewis ◽  
M. J. Brody

The present studies were undertaken to determine the role of rostral periaqueductal gray (PAG) in mediating the pressor effect produced by intracerebroventricular (icv) injection of angiotensin II (ANG II, 200 ng). Two functionally and anatomically distinct sites were identified in rostral PAG: a dorsomedial site involved in the hemodynamic responses produced by electrical stimulation of the anteroventral third ventricle (AV3V) region and a ventromedial site required for the pressor response elicited by icv administration of ANG II. In Saffan-anesthetized rats, injection of lidocaine (LIDO, 4%) in dorsomedial PAG, but not in ventromedial PAG, significantly attenuated the decrease in hindquarter resistance (HQR) produced by electrical stimulation of the AV3V region, and the poststimulatory increase in mean arterial pressure (MAP) and HQR. The injection of LIDO in ventromedial PAG had no effect on the hemodynamic responses produced by electrical stimulation of the AV3V region in anesthetized rats but significantly attenuated the pressor response produced by icv administration of ANG II in conscious rats. The hypothesis that these two sites receive separate projections was addressed by microinjecting two retrogradely transported fluorescent dyes, Fluoro-Gold and Fast Blue. The anatomic findings suggest that separation of the pathways activated by electrical and chemical stimulation of the AV3V region occurs at the level of rostral PAG.


2016 ◽  
Vol 48 (2) ◽  
pp. 124-134 ◽  
Author(s):  
Chunyan Hu ◽  
Ko-Ting Lu ◽  
Masashi Mukohda ◽  
Deborah R. Davis ◽  
Frank M. Faraci ◽  
...  

The ligand activated nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) in the endothelium regulates vascular function and blood pressure (BP). We previously reported that transgenic mice (E-V290M) with selectively targeted endothelial-specific expression of dominant negative PPARγ exhibited endothelial dysfunction when treated with a high-fat diet, and exhibited an augmented pressor response to angiotensin II (ANG II). We hypothesize that interference with endothelial PPARγ would exacerbate ANG II-induced endothelial dysfunction. Endothelial function was examined in E-V290M mice infused with a subpressor dose of ANG II (120 ng·kg−1·min−1) or saline for 2 wk. ANG II infusion significantly impaired the responses to the endothelium-dependent agonist acetylcholine both in basilar and carotid arteries from E-V290M but not NT mice. This impairment was not due to increased BP, which was not significantly different in ANG II-infused E-V290M compared with NT mice. Superoxide levels, and expression of the pro-oxidant Nox2 gene was elevated, whereas expression of the anti-oxidant genes Catalase and SOD3 decreased in carotid arteries from ANG II-infused E-V290M mice. Increased p65 and decreased Iκ-Bα suggesting increased NF-κB activity was also observed in aorta from ANG II-infused E-V290M mice. The responses to acetylcholine were significantly improved both in basilar and carotid arteries after treatment with Tempol (1 mmol/l), a scavenger of superoxide. These findings provide evidence that interference with endothelial PPARγ accelerates ANG II-mediated endothelial dysfunction both in cerebral and conduit arteries through an oxidative stress-dependent mechanism, suggesting a role for endothelial PPARγ in protecting against ANG II-induced endothelial dysfunction.


Hypertension ◽  
2014 ◽  
Vol 64 (suppl_1) ◽  
Author(s):  
Manuel Thieme ◽  
Sema Sivritas ◽  
Sebastian A Potthoff ◽  
Evanthia Mergia ◽  
Lars C Rump ◽  
...  

The kidney plays an outstanding role in the blood pressure (BP) regulation. The renal vasoconstrictor response to angiotensin (Ang) II is balanced by the NO/cGMP-signalling cascade. Ang II causes hypertension and vascular dysfunction by reducing cGMP sensitivity. Ang II is able to increase cGMP degradation by activating phosphodiesterase (PDE)1 and PDE5. The aim of the present study was to identify the predominant PDE subunit regulating renal blood flow (RBF) and vascular tone during hypertension. Therefore, we tested in vivo effects of acute PDE1 (vinpocetine) and PDE5 (sildenafil) inhibition at baseline and during acute Ang II infusion (200ng/kg/min). Furthermore, we examined the impact of PDE-inhibition on Ang II dependent hypertension (500ng/kg/min; 14 days) and on renal vascular function in the isolated perfused kidney. Acute vinpocetine administration (0.8-800μg/kg BW) showed almost no effect on systemic BP and RBF at baseline and during acute Ang II infusion. In contrast, sildenafil (0.8-800μg/kg BW) significantly decreased BP under baseline conditions. During acute Ang II infusion, BP reduction and RBF increase induced by sildenafil was even more pronounced suggesting a pivotal role of the PDE5 in the regulation of renal vascular tone. Based on these results, we tested whether inhibition of the PDE5 protects from hypertension and vascular dysfunction. Indeed, chronic sildenafil treatment significantly attenuated Ang II dependent hypertension in C57BL/6 (vehicle vs. sil: 156±4 vs. 139±7; p<0.05). Moreover, Sildenafil treatment significantly improved NO-dependent vasorelaxation in kidneys of Ang II- treated C57BL/6. To confirm that PDE5 is activated by an increased NO/cGMP signaling, we used eNOS-KO mice, a model known for decreased NO dependent cGMP generation. In eNOS-KO mice, sildenafil failed to reduce Ang II dependent hypertension (172,4 ± 4,3 mmHg vs. 166,1 ± 3,8 mmHg, p=0,2753) and did not improve vascular dysfunction in Ang II treated kidneys. In summary, the PDE5 is the predominant PDE regulating RBF. Inhibition of PDE5 by sildenafil ameliorates chronic Ang II dependent hypertension and improves vascular dysfunction. This study reveals new evidence for the pivotal role of PDE5 in the pathogenesis of AngII-induced hypertension.


1997 ◽  
Vol 272 (6) ◽  
pp. R1816-R1825 ◽  
Author(s):  
R. D. Bendle ◽  
S. C. Malpas ◽  
G. A. Head

In the present study we sought to determine the contribution of endogenous brain stem angiotensin to renal sympathetic reflexes in conscious rabbits. Initial studies determined the subtype of receptor involved in the pressor response to angiotensin II (ANG II) administration into the fourth ventricle (4V). The AT1 antagonist losartan (0.001-10 micrograms 4V) had no effect on blood pressure alone but caused a dose-dependent blockade of the pressor effect of ANG II, with complete blockade produced by 10 micrograms, an effect that lasted for at least 3 h. The AT2 antagonist PD-123319 (0.1-1,000 micrograms) and vehicle had no effect on the ANG II pressor response. The effect of losartan (10 micrograms) on the baroreceptor, chemoreceptor, and trigeminal reflexes was examined in eight rabbits that had been implanted with 4V catheters and an electrode for recording renal sympathetic nerve activity (RSNA) 1 wk earlier. Baroreflex assessments were made during normoxia and two conditions of hypoxia (10% O2 and 10% O2 + 3% CO2) before and after 10 micrograms losartan or vehicle, on separate experimental days. During normoxia and hypoxia+CO2 losartan increased resting RSNA, the range, and upper plateau of the RSNA-MAP baroreflex curves. By contrast the marked increase in RSNA due to activation of trigeminal afferents was not affected by losartan. In conclusion the effect of losartan to increase RSNA activity in conscious rabbits, particularly during hypoxia and baroreceptor unloading, suggests that endogenous ANG II via AT1 receptors normally inhibits renal sympathetic baroreceptor and chemoreceptor reflexes.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Maryam Maleki ◽  
Mehdi Nematbakhsh

Background. Renal ischemia/reperfusion (I/R) is one of the major causes of kidney failure, and it may interact with renin angiotensin system while angiotensin II (Ang II) type 2 receptor (AT2R) expression is gender dependent. We examined the role of AT2R blockade on vascular response to Ang II after I/R in rats.Methods.Male and female rats were subjected to 30 min renal ischemia followed by reperfusion. Two groups of rats received either vehicle or AT2R antagonist, PD123319. Mean arterial pressure (MAP), and renal blood flow (RBF) responses were assessed during graded Ang II (100, 300, and 1000 ng/kg/min, i.v.) infusion at controlled renal perfusion pressure (RPP).Results.Vehicle or antagonist did not alter MAP, RPP, and RBF levels significantly; however, 30 min after reperfusion, RBF decreased insignificantly in female treated with PD123319 (P=0.07). Ang II reduced RBF and increased renal vascular resistance (RVR) in a dose-related fashion (Pdose<0.0001), and PD123319 intensified the reduction of RBF response in female (Pgroup<0.005), but not in male rats.Conclusion.The impact of the AT2R on vascular responses to Ang II in renal I/R injury appears to be sexually dimorphic. PD123319 infusion promotes these hemodynamic responses in female more than in male rats.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Masanobu Yamazato ◽  
Akio Ishida ◽  
Yoriko Yamazato ◽  
Atsushi Sakima ◽  
Yusuke Ohya

Objectives: Subcutaneous infusion of non-pressor doses of angiotensin II (Ang II) gradually produces hypertension in part via central mechanism. Bone marrow-derived cells (BMC) have an ability to secrete paracrine factors leading to improvements in tissue injury. We hypothesized that implantation of autologous BMCs in the brain would attenuate Ang II initiated neurogenic hypertension via secreted paracrine factors. METHODS: Sprague-Dawley rats were divided into following 4 groups: rats received vehicle infusion with intracerebroventricular (icv) administration of medium (V/M group, n=5); rats received vehicle infusion with icv administration of DiI labeled BMCs (V/B group, n=3); rats received Ang II infusion (150 ng/kg/min) with icv administration of medium (A/M group, n=4); rats received Ang II infusion with icv administration of BMCs (A/B group, n=5). Three weeks following initiation of the infusion, rats had surgery to implant arterial and venous catheters. Resting mean arterial pressure (MAP) of rats was recorded in conscious unrestrained state and resting sympathetic tone was evaluated with a peak depressor response produced by hexamethonium (C6) injection. Results: Systolic blood pressure (SBP) measured by tailcuff method was similar among the groups, only A/M group had a trend to increase in SBP. Resting MAPs of V/M, V/B, A/M and A/B group were 125±2, 116±2, 174±7, 134±8 mmHg, respectively. Ang II infusion significantly increased MAP in A/M group, however in A/B group, icv administration of BMCs attenuated the Ang II mediated increase in MAP. Heart rate was similar among the groups. The peak depressor responses to C6 injection in V/M, V/B, A/M and A/B group were 38±3, 46±6, 77±5, 48±1 mmHg, respectively. Ang II infusion significantly increased the peak depressor response to C6 and icv administration of BMCs attenuated the increase in peak depressor response. DiI positive cells were distributed to the choroid plexus, surface of ventricle, and subventricular zone but not to the subfornical organ. Conclusion: Icv administration of autologous BMCs attenuate slow pressor Ang II initiated hypertension via attenuating the Ang II mediated sympathetic activation in rats. Paracrine factors secreted from the BMCs may be involved in this process.


2012 ◽  
Vol 113 (2) ◽  
pp. 184-191 ◽  
Author(s):  
Sophocles Chrissobolis ◽  
Botond Banfi ◽  
Christopher G. Sobey ◽  
Frank M. Faraci

Angiotensin II (Ang II) promotes vascular disease through several mechanisms including by producing oxidative stress and endothelial dysfunction. Although multiple potential sources of reactive oxygen species exist, the relative importance of each is unclear, particularly in individual vascular beds. In these experiments, we examined the role of NADPH oxidase (Nox1 and Nox2) in Ang II-induced endothelial dysfunction in the cerebral circulation. Treatment with Ang II (1.4 mg·kg−1·day−1 for 7 days), but not vehicle, increased blood pressure in all groups. In wild-type (WT; C57Bl/6) mice, Ang II reduced dilation of the basilar artery to the endothelium-dependent agonist acetylcholine compared with vehicle but had no effect on responses in Nox2-deficient (Nox2−/y) mice. Ang II impaired responses to acetylcholine in Nox1 WT (Nox1+/y) and caused a small reduction in responses to acetylcholine in Nox1-deficient (Nox1−/y) mice. Ang II did not impair responses to the endothelium-independent agonists nitroprusside or papaverine in either group. In WT mice, Ang II increased basal and phorbol-dibutyrate-stimulated superoxide production in the cerebrovasculature, and these increases were abolished in Nox2−/y mice. Overall, these data suggest that Nox2 plays a relatively prominent role in mediating Ang II-induced oxidative stress and cerebral endothelial dysfunction, with a minor role for Nox1.


Sign in / Sign up

Export Citation Format

Share Document