scholarly journals Thoroughly Calibrated Modular Agent-Based Model of the Human Cardiovascular and Renal Systems for Blood Pressure Regulation in Health and Disease

2021 ◽  
Vol 12 ◽  
Author(s):  
Elena Kutumova ◽  
Ilya Kiselev ◽  
Ruslan Sharipov ◽  
Galina Lifshits ◽  
Fedor Kolpakov

Here we present a modular agent-based mathematical model of the human cardiovascular and renal systems. It integrates the previous models primarily developed by A. C. Guyton, F. Karaaslan, K. M. Hallow, and Y. V. Solodyannikov. We performed the model calibration to find an equilibrium state within the normal vital sign ranges for a healthy adult. We verified the model’s abilities to reproduce equilibrium states with abnormal physiological values related to different combinations of cardiovascular diseases (such as systemic hypertension, chronic heart failure, pulmonary hypertension, etc.). For the model creation and validation, we involved over 200 scientific studies covering known models of the human cardiovascular and renal functions, biosimulation platforms, and clinical measurements of physiological quantities in normal and pathological conditions. We compiled detailed documentation describing all equations, parameters and variables of the model with justification of all formulas and values. The model is implemented in BioUML and available in the web-version of the software.

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2260
Author(s):  
Letizia Zanetti ◽  
Maria Regoni ◽  
Elena Ratti ◽  
Flavia Valtorta ◽  
Jenny Sassone

AMPA receptors (AMPARs) are ionotropic glutamate receptors that play a major role in excitatory neurotransmission. AMPARs are located at both presynaptic and postsynaptic plasma membranes. A huge number of studies investigated the role of postsynaptic AMPARs in the normal and abnormal functioning of the mammalian central nervous system (CNS). These studies highlighted that changes in the functional properties or abundance of postsynaptic AMPARs are major mechanisms underlying synaptic plasticity phenomena, providing molecular explanations for the processes of learning and memory. Conversely, the role of AMPARs at presynaptic terminals is as yet poorly clarified. Accruing evidence demonstrates that presynaptic AMPARs can modulate the release of various neurotransmitters. Recent studies also suggest that presynaptic AMPARs may possess double ionotropic-metabotropic features and that they are involved in the local regulation of actin dynamics in both dendritic and axonal compartments. In addition, evidence suggests a key role of presynaptic AMPARs in axonal pathology, in regulation of pain transmission and in the physiology of the auditory system. Thus, it appears that presynaptic AMPARs play an important modulatory role in nerve terminal activity, making them attractive as novel pharmacological targets for a variety of pathological conditions.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Natasa Popovic ◽  
Stela Vujosevic ◽  
Tomo Popovic

Abstract The study explores the regional differences in microvascular geometry between the optic disc (O) and the macular area (M) in health and disease. Skeletonized manually segmented vascular networks from 15 healthy, 15 retinas with diabetic retinopathy (DR), and 15 retinas with glaucoma from publicly available High-Resolution Fundus (HRF) image database were used. When visualized by a digital fundus camera, O has a substantial proportion of small arteries and larger arterioles, while M contains smaller arterioles at the periphery and avascular zone in the center. We hypothesized that in pathological conditions the vascular network remodelling patterns in these two regions may be different. The analysis of box-counting fractal dimension (Db), lacunarity (Λ), and microvascular density showed that in healthy retinas, Λ and vessel density were lower in the M compared to the O, while the Db did not change. In retinas with DR, the Db was the lowest in the M, which was different from all other groups. The vessel density followed this trend. Lacunarity was the highest in the O of DR group compared to all other groups. The results show that in DR various regions of retinal microvascular network remodel in a different manner and to different extent.


Diabetologia ◽  
2020 ◽  
Vol 63 (10) ◽  
pp. 1981-1989
Author(s):  
Jovana Vasiljević ◽  
Juha M. Torkko ◽  
Klaus-Peter Knoch ◽  
Michele Solimena

Abstract The discovery of insulin in 1921 has been one of greatest scientific achievements of the 20th century. Since then, the availability of insulin has shifted the focus of diabetes treatment from trying to keep patients alive to saving and improving the life of millions. Throughout this time, basic and clinical research has advanced our understanding of insulin synthesis and action, both in healthy and pathological conditions. Yet, multiple aspects of insulin production remain unknown. In this review, we focus on the most recent findings on insulin synthesis, highlighting their relevance in diabetes.


2007 ◽  
Vol 27 (4) ◽  
pp. 375-390 ◽  
Author(s):  
Susan Yung ◽  
Tak Mao Chan

Recent advances in the field of glycobiology have exposed a multitude of biological processes that are controlled or influenced by proteoglycans, in both physiological and pathological conditions ranging from early embryonic development, inflammation, and fibrosis to tumor invasion and metastasis. The first part of this article reviews the biosynthesis of proteoglycans and their multifunctional roles in health and disease; the second part of this review focuses on their putative roles in peritoneal homeostasis and peritoneal inflammation and fibrosis in the context of chronic peritoneal dialysis and peritonitis.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Maria Emília Favero ◽  
Fernando Ferreira Costa

Alpha-hemoglobin-stabilizing protein (AHSP) is an erythroid-specific protein that acts as a molecular chaperone for the free α chains of hemoglobin. Evidence strongly suggests that AHSP participates in hemoglobin synthesis and may act to neutralize the cytotoxic effects of excess free alpha-globin subunits that accumulate both in normal and beta-thalassemic erythroid precursor cells. As such, AHSP seems to be essential for normal erythropoiesis, and impaired upregulation of AHSP may lead to premature erythroid cell death, resulting in ineffective erythropoiesis. ReducedAHSPmRNA expression has been associated with clinical variability in some cases of β-thalassemia. It has been shown that αHb variants may also impair AHSP-αHb interactions, leading to pathological conditions that resemble α-thalassemia syndromes. The aim of this paper is to summarize current information concerning the structure and function of AHSP, focusing on its role in normal erythropoiesis and its relevance in health and disease.


Author(s):  
Daniela Intartaglia ◽  
Giuliana Giamundo ◽  
Ivan Conte

MicroRNAs (miRNAs), a class of non-coding RNAs, are essential key players in the control of biological processes in both physiological and pathological conditions. miRNAs play important roles in fine tuning the expression of many genes, which often have roles in common molecular networks. miRNA dysregulation thus renders cells vulnerable to aberrant fluctuations in genes, resulting in degenerative diseases. The retinal pigment epithelium (RPE) is a monolayer of polarized pigmented epithelial cells that resides between the light-sensitive photoreceptors (PR) and the choriocapillaris. The demanding physiological functions of RPE cells require precise gene regulation for the maintenance of retinal homeostasis under stress conditions and the preservation of vision. Thus far, our understanding of how miRNAs function in the homeostasis and maintenance of the RPE has been poorly addressed, and advancing our knowledge is central to harnessing their potential as therapeutic agents to counteract visual impairment. This review focuses on the emerging roles of miRNAs in the function and health of the RPE and on the future exploration of miRNA-based therapeutic approaches to counteract blinding diseases.


The assessment of semen, up to nowadays, has always been made in relation to its fertilizing ability. In our analysis, we studied semen parameters and tried to relate them to specific pathological conditions. This has led us to a pioneering approach of semen analysis. A new test that can tell a man whether his genital tract is healthy is described. This is the andro-test which is defined as the semen analysis following the SpermLab’s Criteria. These criteria are the rules for the correct assessment of a man's health through an analysis of his semen. The physiological values for human semen are defined with respect to the health condition of the urogenital system. Although these values do not refer to the fertilizing ability of semen, a healthy semen is able to fertilize, but the vice versa is not always true. This study also looks into the reasons why non specialized laboratories do not comply to the WHO’s recommendations. The difference between Andrology and Spermatology is clarified and the importance of the annual preventive andrological checkup since adolescence is described. A new classification of the morphological abnormalities based on a causal approach and new indexes describing the deviations from normal morphology are introduced. In regard to the improvement of services to promote the global health, the importance of andro-test in the clinical practice and the prevention of serious pathological conditions in men, women and children is also denoted.


Sign in / Sign up

Export Citation Format

Share Document