scholarly journals Structural divergence and loss of phosphoinositide-specific phospholipase C signaling components during the evolution of the green plant lineage: implications from structural characteristics of algal components

2014 ◽  
Vol 5 ◽  
Author(s):  
Koji Mikami
2003 ◽  
Vol 163 (5) ◽  
pp. 1157-1165 ◽  
Author(s):  
Elsa-Noah N'Diaye ◽  
Eric J. Brown

PLIC-1, a newly described ubiquitin-related protein, inhibited both Jurkat migration toward SDF-1α and A431 wound healing, but the closely related PLIC-2 did not. PLIC-1 prevented the SDF-1α–induced activation of phospholipase C, decreased ligand-induced internalization of SDF-1α receptor CXCR4 and inhibited chemotaxis signaled by a transfected Gi-coupled receptor. However, PLIC-1 had no effect on Gs-mediated adenylyl cyclase activation, and inhibited only the Gβγ-dependent component of Gq-initiated increase in [Ca2+]i, which is consistent with selective inhibition of Gβγ function. PLIC-1 colocalized with G proteins in lamellae and pseudopods, and precipitated Gβγ in pull downs. Interaction with Gβγ did not require PLIC-1's ubiquitin-like or ubiquitin-associated domains, and proteasome inhibition had no effect on SDF-1α activation of phospholipase C, indicating that PLIC-1's inhibition of Gβγ did not result from effects on proteasome function. Thus, PLIC-1 inhibits Gi signaling by direct association with Gβγ; because it also interacts with CD47, a modulator of integrin function, it likely has a role integrating adhesion and signaling components of cell migration.


1985 ◽  
Vol 226 (2) ◽  
pp. 369-377 ◽  
Author(s):  
A H Futerman ◽  
R M Fiorini ◽  
E Roth ◽  
M G Low ◽  
I Silman

Quantitative solubilization of the phospholipid-associated form of acetylcholinesterase (AChE) from Torpedo electric organ can be achieved in the absence of detergent by treatment with phosphatidylinositol-specific phospholipase C (PIPLC) from Staphylococcus aureus [Futerman, Low & Silman (1983) Neurosci. Lett. 40, 85-89]. The sedimentation coefficient on sucrose gradients of AChE solubilized in detergents (DSAChE) varies with the detergent employed. However, the coefficient of AChE directly solubilized by PIPLC is not changed by detergents. Furthermore, PIPLC can abolish the detergent-sensitivity of the sedimentation coefficient of DSAChE purified by affinity chromatography, suggesting that one or more molecules of phosphatidylinositol (PI) are co-solubilized with DSAChE and remain attached throughout purification. DSAChE binds to phospholipid liposomes, whereas PIPLC-solubilized AChE and DSAChE treated with PIPLC do not bind even to liposomes containing PI. Sodium dodecyl sulphate/polyacrylamide-gel electrophoresis shows that PIPLC-solubilized AChE, like unmodified DSAChE, is a catalytic subunit dimer; electrophoresis in the presence of reducing agent reveals no detectable difference in the Mr of the catalytic subunit of unmodified DSAChE, of AChE solubilized by PIPLC and of AChE solubilized by Proteinase K. The results presented suggest that DSAChE is anchored to the plasma membrane by one or more PI molecules which are tightly attached to a short amino acid sequence at one end of the catalytic subunit polypeptide.


Author(s):  
R. Gronsky

The phenomenon of clustering in Al-Ag alloys has been extensively studied since the early work of Guinierl, wherein the pre-precipitation state was characterized as an assembly of spherical, ordered, silver-rich G.P. zones. Subsequent x-ray and TEM investigations yielded results in general agreement with this model. However, serious discrepancies were later revealed by the detailed x-ray diffraction - based computer simulations of Gragg and Cohen, i.e., the silver-rich clusters were instead octahedral in shape and fully disordered, atleast below 170°C. The object of the present investigation is to examine directly the structural characteristics of G.P. zones in Al-Ag by high resolution transmission electron microscopy.


Author(s):  
V. Annamalai ◽  
L.E. Murr

Economical recovery of copper metal from leach liquors has been carried out by the simple process of cementing copper onto a suitable substrate metal, such as scrap-iron, since the 16th century. The process has, however, a major drawback of consuming more iron than stoichiometrically needed by the reaction.Therefore, many research groups started looking into the process more closely. Though it is accepted that the structural characteristics of the resultant copper deposit cause changes in reaction rates for various experimental conditions, not many systems have been systematically investigated. This paper examines the deposit structures and the kinetic data, and explains the correlations between them.A simple cementation cell along with rotating discs of pure iron (99.9%) were employed in this study to obtain the kinetic results The resultant copper deposits were studied in a Hitachi Perkin-Elmer HHS-2R scanning electron microscope operated at 25kV in the secondary electron emission mode.


Author(s):  
G. M. Michal

Several TEM investigations have attempted to correlate the structural characteristics to the unusual shape memory effect in NiTi, the consensus being the essence of the memory effect is ostensible manifest in the structure of NiTi transforming martensitic- ally from a B2 ordered lattice to a low temperature monoclinic phase. Commensurate with the low symmetry of the martensite phase, many variants may form from the B2 lattice explaining the very complex transformed microstructure. The microstructure may also be complicated by the enhanced formation of oxide or hydride phases and precipitation of intermetallic compounds by electron beam exposure. Variants are typically found in selfaccommodation groups with members of a group internally twinned and the twins themselves are often observed to be internally twinned. Often the most salient feature of a group of variants is their close clustering around a given orientation. Analysis of such orientation relationships may be a key to determining the nature of the reaction path that gives the transformation its apparently perfect reversibility.


Author(s):  
Christopher Viney

Light microscopy is a convenient technique for characterizing molecular order in fluid liquid crystalline materials. Microstructures can usually be observed under the actual conditions that promote the formation of liquid crystalline phases, whether or not a solvent is required, and at temperatures that can range from the boiling point of nitrogen to 600°C. It is relatively easy to produce specimens that are sufficiently thin and flat, simply by confining a droplet between glass cover slides. Specimens do not need to be conducting, and they do not have to be maintained in a vacuum. Drybox or other controlled environmental conditions can be maintained in a sealed chamber equipped with transparent windows; some heating/ freezing stages can be used for this purpose. It is relatively easy to construct a modified stage so that the generation and relaxation of global molecular order can be observed while specimens are being sheared, simulating flow conditions that exist during processing. Also, light only rarely affects the chemical composition or molecular weight distribution of the sample. Because little or no processing is required after collecting the sample, one can be confident that biologically derived materials will reveal many of their in vivo structural characteristics, even though microscopy is performed in vitro.


2007 ◽  
Vol 74 ◽  
pp. 37-45 ◽  
Author(s):  
James W. Putney

The original hypothesis put forth by Bob Michell in his seminal 1975 review held that inositol lipid breakdown was involved in the activation of plasma membrane calcium channels or ‘gates’. Subsequently, it was demonstrated that while the interposition of inositol lipid breakdown upstream of calcium signalling was correct, it was predominantly the release of Ca2+ that was activated, through the formation of Ins(1,4,5)P3. Ca2+ entry across the plasma membrane involved a secondary mechanism signalled in an unknown manner by depletion of intracellular Ca2+ stores. In recent years, however, additional non-store-operated mechanisms for Ca2+ entry have emerged. In many instances, these pathways involve homologues of the Drosophila trp (transient receptor potential) gene. In mammalian systems there are seven members of the TRP superfamily, designated TRPC1–TRPC7, which appear to be reasonably close structural and functional homologues of Drosophila TRP. Although these channels can sometimes function as store-operated channels, in the majority of instances they function as channels more directly linked to phospholipase C activity. Three members of this family, TRPC3, 6 and 7, are activated by the phosphoinositide breakdown product, diacylglycerol. Two others, TRPC4 and 5, are also activated as a consequence of phospholipase C activity, although the precise substrate or product molecules involved are still unclear. Thus the TRPCs represent a family of ion channels that are directly activated by inositol lipid breakdown, confirming Bob Michell's original prediction 30 years ago.


1998 ◽  
Vol 17 (1) ◽  
pp. 531-539 ◽  
Author(s):  
Akiko Kondow ◽  
Shin-ichi Yokobori ◽  
Takuya Ueda ◽  
Kimitsuna Watanabe

Sign in / Sign up

Export Citation Format

Share Document