scholarly journals Canopy Vegetation Indices from In situ Hyperspectral Data to Assess Plant Water Status of Winter Wheat under Powdery Mildew Stress

2017 ◽  
Vol 8 ◽  
Author(s):  
Wei Feng ◽  
Shuangli Qi ◽  
Yarong Heng ◽  
Yi Zhou ◽  
Yapeng Wu ◽  
...  
2012 ◽  
Vol 500 ◽  
pp. 149-154
Author(s):  
Shan Shan Wang ◽  
Xi Chen ◽  
Quan Wang ◽  
An Ming Bao

Many fundamental ecosystem properties and dynamics are monitored by plant water status, particularly in arid ecosystem where water is usually limiting. Although plant water status have been widely assessed using field measurements by ecological methods, approaches for remotely sensing plant water status are largely lacking, particularly diurnal water status. In arid ecosystem, WUE is a dynamic indicator for detecting water status, but also an integrated index for correlating to the plant photosynthesis. In our study, the experiments were conducted on native dominant desert shrub, Tamarix ramosissima, in their original habitats on the southern periphery of Gurbantonggut desert, China. We explored sensitive and useful hyperspectral indices for estimating diurnal WUE at a leaf scale based on diurnal measurements of hyperspectral reflectance, photosynthesis and micrometeorological variables. According to the statistical analysis of relationships between spectral indices and WUE estimation, SR type hyperspectral index is the sensitivity index for WUE estimation. Our results provide useful insights for monitoring desert shrubs diurnal and dynamic water status, using a wide range of available hyperspectral data.


2021 ◽  
Vol 118 (23) ◽  
pp. e2008276118
Author(s):  
Piyush Jain ◽  
Weizhen Liu ◽  
Siyu Zhu ◽  
Christine Yao-Yun Chang ◽  
Jeff Melkonian ◽  
...  

Leaf water potential is a critical indicator of plant water status, integrating soil moisture status, plant physiology, and environmental conditions. There are few tools for measuring plant water status (water potential) in situ, presenting a critical barrier for developing appropriate phenotyping (measurement) methods for crop development and modeling efforts aimed at understanding water transport in plants. Here, we present the development of an in situ, minimally disruptive hydrogel nanoreporter (AquaDust) for measuring leaf water potential. The gel matrix responds to changes in water potential in its local environment by swelling; the distance between covalently linked dyes changes with the reconfiguration of the polymer, leading to changes in the emission spectrum via Förster Resonance Energy Transfer (FRET). Upon infiltration into leaves, the nanoparticles localize within the apoplastic space in the mesophyll; they do not enter the cytoplasm or the xylem. We characterize the physical basis for AquaDust’s response and demonstrate its function in intact maize (Zea mays L.) leaves as a reporter of leaf water potential. We use AquaDust to measure gradients of water potential along intact, actively transpiring leaves as a function of water status; the localized nature of the reporters allows us to define a hydraulic model that distinguishes resistances inside and outside the xylem. We also present field measurements with AquaDust through a full diurnal cycle to confirm the robustness of the technique and of our model. We conclude that AquaDust offers potential opportunities for high-throughput field measurements and spatially resolved studies of water relations within plant tissues.


Author(s):  
Ben Zhao ◽  
Traore Adama ◽  
Syed Tahir Ata-Ul-Karim ◽  
Yan Guo ◽  
Zhandong Liu ◽  
...  

2014 ◽  
Vol 12 (3) ◽  
pp. 876-882 ◽  
Author(s):  
Qingsong Guan ◽  
Wenjiang Huang ◽  
Jinling Zhao ◽  
Liangyun Liu ◽  
Dong Liang ◽  
...  

2020 ◽  
Author(s):  
Piyush Jain ◽  
Weizhen Liu ◽  
Siyu Zhu ◽  
Jeff Melkonian ◽  
Duke Pauli ◽  
...  

AbstractLeaf water potential is a critical indicator of plant water status, integrating soil moisture status, plant physiology, and environmental conditions. There are few tools for measuring plant water status (water potential) in situ, presenting a critical barrier for the development of appropriate phenotyping (measurement) methods for crop development and modeling efforts aimed at understanding water transport in plants. Here, we present the development of an in situ, minimally-disruptive hydrogel nanoreporter (AquaDust) for measuring leaf water potential. The gel matrix responds to changes in water potential in its local environment by swelling; the distance between covalently linked dyes changes with the reconfiguration of the polymer, leading to changes in the emission spectrum via Fluorescence Resonance Energy Transfer (FRET). Upon infiltration into leaves, the nanoparticles localize within the apoplastic space in the mesophyll; they do not enter the cytoplast or the xylem. We characterize the physical basis for AquaDust’s response and demonstrate its function in intact maize (Zea mays L.) leaves as a reporter of leaf water potential. We use AquaDust to measure gradients of water potential along intact, actively transpiring leaves as a function of water status; the localized nature of the reporters allows us to define a hydraulic model that distinguishes resistances inside and outside the xylem. We also present field measurements with AquaDust through a full diurnal cycle to confirm the robustness of the technique and of our model. We conclude that AquaDust offers potential opportunities for high-throughput, field measurements and spatially resolved studies of water relations within plant tissues.


PLoS ONE ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. e0216890 ◽  
Author(s):  
Hui Sun ◽  
Meichen Feng ◽  
Lujie Xiao ◽  
Wude Yang ◽  
Chao Wang ◽  
...  

2010 ◽  
Vol 7 (1) ◽  
Author(s):  
Saraswati Prabawardani

<!--[if gte mso 9]><xml> <w:WordDocument> <w:View>Normal</w:View> <w:Zoom>0</w:Zoom> <w:PunctuationKerning /> <w:ValidateAgainstSchemas /> <w:SaveIfXMLInvalid>false</w:SaveIfXMLInvalid> <w:IgnoreMixedContent>false</w:IgnoreMixedContent> <w:AlwaysShowPlaceholderText>false</w:AlwaysShowPlaceholderText> <w:Compatibility> <w:BreakWrappedTables /> <w:SnapToGridInCell /> <w:WrapTextWithPunct /> <w:UseAsianBreakRules /> <w:DontGrowAutofit /> <w:UseFELayout /> </w:Compatibility> <w:BrowserLevel>MicrosoftInternetExplorer4</w:BrowserLevel> </w:WordDocument> </xml><![endif]--><!--[if gte mso 9]><xml> <w:LatentStyles DefLockedState="false" LatentStyleCount="156"> </w:LatentStyles> </xml><![endif]--> <!--[if gte mso 10]> <mce:style><! /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-fareast-font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} --> <!--[endif]--> <p class="MsoNormal" style="text-align: justify;"><span style="font-size: 10pt;">The measurement of plant water status such as leaf water potential (LWP) and leaf relative water content (RWC) is important part of understanding plant physiology and biomass production. Preliminary study was made to determine the optimum amount of leaf abrasion and equilibration time of sweet potato leaf inside the thermocouple psychrometer chambers. Based on the trial, the standard equilibration time curve of a Peltier thermocouple for sweet potato leaf was between 2 and 3 hours. To increase the water vapour conductance across the leaf epidermis the waxy leaf cuticle should be removed or broken by abrasion. The result showed that 4 times leaf rubbings was accepted as the most effective way to increase leaf vapour conductance of sweet potato in the psychrometer chambers. In calculating the leaf relative water content, unstressed water of sweet potato leaves require 4 hours imbibition, whereas water stressed of sweet potato leaves require 5 to 6 hours to reach the saturation time. Either leaf water potential or relative water content can be used as a parameter for plant water status in sweet potato.</span><span style="font-size: 10pt;"> </span></p>


1973 ◽  
Vol 65 (4) ◽  
pp. 677-678 ◽  
Author(s):  
J. R. Stansell ◽  
Betty Klepper ◽  
V. Douglas Browning ◽  
H. M. Taylor

Sign in / Sign up

Export Citation Format

Share Document