scholarly journals Photosynthetic Characteristics and Uptake and Translocation of Nitrogen in Peanut in a Wheat–Peanut Rotation System Under Different Fertilizer Management Regimes

2019 ◽  
Vol 10 ◽  
Author(s):  
Zhaoxin Liu ◽  
Fang Gao ◽  
Jianqun Yang ◽  
Xiaoyu Zhen ◽  
Ying Li ◽  
...  
Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 258
Author(s):  
Peng Ma ◽  
Yan Lan ◽  
Tengfei Lyu ◽  
Feijie Li ◽  
Zhiyuan Yang ◽  
...  

To evaluate the efficient use of nitrogen (N) for rice in a rapeseed–wheat–rice rotation system, a pot experiment was conducted. The results indicated that in the conventional 15N-labeled (Nc) and reduced 15N-labeled (Nr) urea applications, absorbed N and soil residual N was higher in rapeseed than in wheat. In the rice season, the higher accumulation of 15N was achieved with an Nr application rate during the rapeseed season and an N fertilizer management model (40% as basal fertilizer, 40% as tillering fertilizer, and 20% as panicle fertilizer) during the rice season (PrNrM3). A high 15N accumulation was also achieved under the Nc application rate during the wheat season and the N fertilizer management model during the rice season (PwNcM3). The accumulation of 15N in PrNrM3 and PwNcM3 accounted for 21.35% and 36.72% of the residual N under the Nr application rate in the rapeseed season and the Nc application rate in the wheat season, respectively. Compared with the Nc application rate in the rapeseed season and M3 N management in the rice season (PrNcM3), the N agronomy efficiency (NAE) and the N partial factor efficiency (NPFP) of rice were increased by 23.85% and 1.59%, respectively, in PrNrM3. The annual crop yield was 3.95% lower in PrNrM3, which was not significant. PrNrM3 was a stable yield, N-saving application rate for rapeseed-rice rotation systems in southern China.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1060
Author(s):  
Peng Ma ◽  
Yan Lan ◽  
Tengfei Lyu ◽  
Yujie Zhang ◽  
Dan Lin ◽  
...  

This investigation aims to provide theoretical and practical evidence for the efficient utilization of nitrogen (N) in paddy-upland rapeseed-rice rotation systems because a lack of previous research on such rotation systems leads to inefficient management practices. The effects of the N application rates and the N fertilizer management strategies for rapeseed and rice were examined, respectively, in relation to the photosynthetic productivity and yields of hybrid rice. The results indicated that the leaf area, Pn, with 40% as basal fertilizer, 40% as tillering fertilize, and 20% as panicle fertilizer and a reduced N rate (30 kg/ha) during the rape season, were higher than other nitrogen management strategies trialed, with conventional N rates in the rape season. The average rice grain yield (9545.15 kg/ha) over the two years with 40% as basal fertilizer, 40% as tillering fertilizer, and 20% as panicle fertilizer was higher than other N treatments with the reduced N rates during the rape season. The reduced N rate during the rapeseed season and 40% as basal fertilizer, 40% as tillering fertilizer, and 20% as panicle fertilizer management during the rice season for the rape-rice rotation system exhibited the highest rice yields. Our findings indicated that the N fertilizer management model was a high-yielding, N-saving, and environmentally friendly measure for rape–rice rotation systems in southern China.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 490
Author(s):  
Peng Ma ◽  
Yan Lan ◽  
Xu Lv ◽  
Ping Fan ◽  
Zhiyuan Yang ◽  
...  

To determine the influence of N fertilizer management on rice yield and rice quality under diversified rotations and establish a high-yield, high-quality, and environmentally friendly diversified planting technology, a rapeseed/wheat–rice rotation system for 2 successive years was implemented. In those rotation systems, a conventional N rate (Nc; 180 kg/hm2 N in rape season, 150 kg/hm2 N in wheat season) and a reduced N rate (Nr; 150 kg/hm2 N in rape season, 120 kg/hm2 N in wheat season) were applied. Based on an application rate of 150 kg/hm2 N in the rice season, three N management models were applied, in which the application ratio of base:tiller:panicle fertilizer was 20%:20%:60% in treatment M1, 30%:30%:40% in treatment M2, and 40%:40%:20% in treatment M3. Zero N was used as the control (M0). The results showed that, under Nc and Nr in the rape season, M3 management produced an increase in rice yield. The average rice yields in 2018 and 2019 were 9.41 t/hm2 and 9.54 t/hm2, respectively. An increase in rice peak viscosity, hot viscosity, break disintegration, and chalkiness was achieved. Under Nc and Nr in the wheat season, the panicle fertilizer of 40%:40%:20% in rice season produced a higher rice yield. The average yield was 9.45 t/hm2 and 9.19 t/hm2, respectively, and an increase in rice peak viscosity, hot viscosity, and break disintegration was produced. Reduced N for rapeseed and the panicle fertilizer of 40%:40%:20% in rice season under a rapeseed–rice rotation system can be recommended to stabilize yield and ensure high-quality rice production and environmentally friendly rapeseed–rice rotation systems in southern China.


Sign in / Sign up

Export Citation Format

Share Document