scholarly journals Nitrogen Fate and Efficiency of Fertilizer Application under a Rapeseed–Wheat–Rice Rotation System in Southwest China

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 258
Author(s):  
Peng Ma ◽  
Yan Lan ◽  
Tengfei Lyu ◽  
Feijie Li ◽  
Zhiyuan Yang ◽  
...  

To evaluate the efficient use of nitrogen (N) for rice in a rapeseed–wheat–rice rotation system, a pot experiment was conducted. The results indicated that in the conventional 15N-labeled (Nc) and reduced 15N-labeled (Nr) urea applications, absorbed N and soil residual N was higher in rapeseed than in wheat. In the rice season, the higher accumulation of 15N was achieved with an Nr application rate during the rapeseed season and an N fertilizer management model (40% as basal fertilizer, 40% as tillering fertilizer, and 20% as panicle fertilizer) during the rice season (PrNrM3). A high 15N accumulation was also achieved under the Nc application rate during the wheat season and the N fertilizer management model during the rice season (PwNcM3). The accumulation of 15N in PrNrM3 and PwNcM3 accounted for 21.35% and 36.72% of the residual N under the Nr application rate in the rapeseed season and the Nc application rate in the wheat season, respectively. Compared with the Nc application rate in the rapeseed season and M3 N management in the rice season (PrNcM3), the N agronomy efficiency (NAE) and the N partial factor efficiency (NPFP) of rice were increased by 23.85% and 1.59%, respectively, in PrNrM3. The annual crop yield was 3.95% lower in PrNrM3, which was not significant. PrNrM3 was a stable yield, N-saving application rate for rapeseed-rice rotation systems in southern China.

Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 490
Author(s):  
Peng Ma ◽  
Yan Lan ◽  
Xu Lv ◽  
Ping Fan ◽  
Zhiyuan Yang ◽  
...  

To determine the influence of N fertilizer management on rice yield and rice quality under diversified rotations and establish a high-yield, high-quality, and environmentally friendly diversified planting technology, a rapeseed/wheat–rice rotation system for 2 successive years was implemented. In those rotation systems, a conventional N rate (Nc; 180 kg/hm2 N in rape season, 150 kg/hm2 N in wheat season) and a reduced N rate (Nr; 150 kg/hm2 N in rape season, 120 kg/hm2 N in wheat season) were applied. Based on an application rate of 150 kg/hm2 N in the rice season, three N management models were applied, in which the application ratio of base:tiller:panicle fertilizer was 20%:20%:60% in treatment M1, 30%:30%:40% in treatment M2, and 40%:40%:20% in treatment M3. Zero N was used as the control (M0). The results showed that, under Nc and Nr in the rape season, M3 management produced an increase in rice yield. The average rice yields in 2018 and 2019 were 9.41 t/hm2 and 9.54 t/hm2, respectively. An increase in rice peak viscosity, hot viscosity, break disintegration, and chalkiness was achieved. Under Nc and Nr in the wheat season, the panicle fertilizer of 40%:40%:20% in rice season produced a higher rice yield. The average yield was 9.45 t/hm2 and 9.19 t/hm2, respectively, and an increase in rice peak viscosity, hot viscosity, and break disintegration was produced. Reduced N for rapeseed and the panicle fertilizer of 40%:40%:20% in rice season under a rapeseed–rice rotation system can be recommended to stabilize yield and ensure high-quality rice production and environmentally friendly rapeseed–rice rotation systems in southern China.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1060
Author(s):  
Peng Ma ◽  
Yan Lan ◽  
Tengfei Lyu ◽  
Yujie Zhang ◽  
Dan Lin ◽  
...  

This investigation aims to provide theoretical and practical evidence for the efficient utilization of nitrogen (N) in paddy-upland rapeseed-rice rotation systems because a lack of previous research on such rotation systems leads to inefficient management practices. The effects of the N application rates and the N fertilizer management strategies for rapeseed and rice were examined, respectively, in relation to the photosynthetic productivity and yields of hybrid rice. The results indicated that the leaf area, Pn, with 40% as basal fertilizer, 40% as tillering fertilize, and 20% as panicle fertilizer and a reduced N rate (30 kg/ha) during the rape season, were higher than other nitrogen management strategies trialed, with conventional N rates in the rape season. The average rice grain yield (9545.15 kg/ha) over the two years with 40% as basal fertilizer, 40% as tillering fertilizer, and 20% as panicle fertilizer was higher than other N treatments with the reduced N rates during the rape season. The reduced N rate during the rapeseed season and 40% as basal fertilizer, 40% as tillering fertilizer, and 20% as panicle fertilizer management during the rice season for the rape-rice rotation system exhibited the highest rice yields. Our findings indicated that the N fertilizer management model was a high-yielding, N-saving, and environmentally friendly measure for rape–rice rotation systems in southern China.


HortScience ◽  
2015 ◽  
Vol 50 (5) ◽  
pp. 750-753
Author(s):  
Wei-Ling Yuan ◽  
Shang-yong Yuan ◽  
Xiao-hui Deng ◽  
Cai-xia Gan ◽  
Lei Cui ◽  
...  

Efficient nitrogen (N) fertilizer management is crucial for ensuring the maximum economic yield and reducing the risk of environmental pollution. The objective of this study was to determine the effect of N fertilizer management on root yield and N uptake of radish in southern China by using 15N isotope tracing. A 2-year field experiment was conducted with three N rates (0, 60, and 120 kg N/ha) and two different application proportions, viz, A [50% at basal, 20% at 15 days after seeding (DAS), 30% at 30 DAS] and B (30% at basal, 20% at 15 DAS, 50% at 30 DAS) for each N rate, which were expressed as N0, N60A, N60B, N120A, and N120B, respectively. The results showed that root yields were significantly increased with N rates increasing from 0 to 120 kg N/ha. The root yields for N120A and N120B were 67.60 t·ha−1 and 72.50 t·ha−1 at harvest, 64.07% and 66.67% higher than those for the treatments of N60A and N60B, respectively. Mean radish recovery of N fertilizer ranged from 25.90% at N120A to 32.60% at N60B, and N fertilizer residual rate in the soil ranged from 11.50% at N120A to 14.90% at N60B. About 17.50% to 35.70% of total uptake of 15N derived from basal fertilizer was absorbed at seeding stage. However, 61.87% to 80.18% of total uptake of 15N derived from topdressing fertilizer absorbed at root expanding stage. Therefore, appropriate nitrogen application with increasing topdressing nitrogen amount could increase root yield of radish and the nitrogen recovery efficiency. Nitrogen fertilizer application recommended was 120 kg N/ha with 30% for basal, 20% for 15 DAS and 50% for 30 DAS in this study.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ken Okamoto ◽  
Shinkichi Goto ◽  
Toshihiko Anzai ◽  
Shotaro Ando

Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We conducted a sugarcane cultivation experiment with drainage lysimeters and different N application rates in three cropping seasons (three years). N loads were reduced by reducing the first N application rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application (T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1). N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1). Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons. Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jacob T. Bushong ◽  
D. Brian Arnall ◽  
William R. Raun

Preplant irrigation can impact fertilizer management in winter wheat. The objective of this study was to evaluate the main and interactive effects of preplant irrigation, N fertilizer application timing, and different N, P, and K fertilizer treatments on grain yield and WUE. Several significant two-way interactions and main effects of all three factors evaluated were observed over four growing seasons for grain yield and WUE. These effects could be described by differences in rainfall and soil moisture content among years. Overall, grain yield and WUE were optimized, if irrigation or adequate soil moisture were available prior to planting. For rain-fed treatments, the timing of N fertilizer application was not as important and could be applied before planting or topdressed without much difference in yield. The application of P fertilizer proved to be beneficial on average years but was not needed in years where above average soil moisture was present. There was no added benefit to applying K fertilizer. In conclusion, N and P fertilizer management practices may need to be altered yearly based on changes in soil moisture from irrigation and/or rainfall.


HortScience ◽  
2001 ◽  
Vol 36 (6) ◽  
pp. 1123-1126 ◽  
Author(s):  
Charles F. Mancino ◽  
Dianne Petrunak ◽  
Douglas Wilkinson

The loss of fertilizer granules collected in turf clippings during routine putting green mowing has not been determined. The objective of this study was to quantify the amounts of greens-grade granular potassium (K) and nitrogen (N) fertilizers collected during the routine mowing of a `Pennlinks' creeping bentgrass (Agrostis palustris Huds.) putting green. In the first study, five K-containing granular fertilizers were applied at K rates of 2.43 and 4.86 g·m-2. A second study was also performed with six granular Ncontaining fertilizers and one liquid N fertilizer applied at an N rate of 4.86 g·m-2. Both studies were performed twice. Irrigation (6.4 mm) was applied immediately after each fertilizer application and again on the following day. These two irrigations, plus additional irrigation and rain, resulted in each study receiving about 2.54 cm of water over each nineday study period. Mowing and clipping collection using a walk-behind greens mower set to cut at 3.96 mm began two days after treatment (2 DAT) and continued until 9 DAT. The clippings were oven-dried and separated from the fertilizer using a small pneumatic seed cleaner. Collected fertilizer was weighed and expressed as a percentage of the fertilizer applied. Liquid N fertilizer loss was estimated to be the difference between clipping N content of treated plots and untreated controls. Total K fertilizer loss was: UHS Signature 15-0-30 (15.3% to 22.9%) > Lebanon Isotek 11-3-22 (8.7% to 10.7%) > Scott's Contec 13-2-26 (4.9% to 7.4%) > Lesco Matrix 12-0-22 (0.1% to 0.4%) = Lesco Matrix 5-0-28 (0.1% to 0.5%). Signature was the only fertilizer significantly affected by rate and a greater percentage of loss occurred at the lower K application rate. Most loss occurred during the first and second mowing events with small amounts of fertilizer found in clippings from later mowings. The two Lesco materials were not found in clippings after the first mowing. Nitrogen fertilizer granule loss was also greatest with the first and second mowings. Total percentage of losses were IBDU 31-0-0 (75.4%) > Polyon 41-0-0 (70.8%)> Milorganite 6-2-0 (55.7%) > Nutralene 40-0-0 (47.0%) > UHS Signature (19.3%) > Isotek 11-3-22 (9.5%) > N-Sure Pro 30-0-0 (1.9%). In both studies, fertilizer loss appeared to be most related to water-solubility of the fertilizer, but size and density might also be factors.


Author(s):  
Syezlin Hasan ◽  
James C. R. Smart ◽  
Rachel Hay ◽  
Sharyn Rundle-Thiele

Research focused on understanding wider systemic factors driving behavioral change is limited with a dominant focus on the role of individual farmer and psychosocial factors for farming practice change, including reducing fertilizer application in agriculture. Adopting a wider systems perspective, the current study examines change and the role that supporting services have on fertilizer application rate change. A total of 238 sugarcane growers completed surveys reporting on changes in fertilizer application along with factors that may explain behavior change. Logistic regressions and negative binomial count-data regressions were used to examine whether farmers had changed fertilizer application rates and if they had, how long ago they made the change, and to explore the impact of individual and system factors in influencing change. Approximately one in three sugarcane growers surveyed (37%) had changed the method they used to calculate fertilizer application rates for the cane land they owned/managed at some point. Logistic regression results indicated growers were less likely to change the basis for their fertilizer calculation if they regarded maintaining good relationships with other local growers as being extremely important, they had another source of off-farm income, and if they had not attended a government-funded fertilizer management workshop in the five years preceding the survey. Similar drivers promoted early adoption of fertilizer practice change; namely, regarding family traditions and heritage as being unimportant, having sole decision-making authority on farming activities and having attended up to 5 workshops in the five years prior to completing the survey. Results demonstrated the influence of government-funded services to support practice change.


1997 ◽  
Vol 128 (4) ◽  
pp. 415-424 ◽  
Author(s):  
C. J. PILBEAM ◽  
A.M. McNEILL ◽  
H. C. HARRIS ◽  
R. S. SWIFT

15N-labelled fertilizer was applied at different rates (0, 30, 60, 90 kg N ha−1) and in different forms (urea or ammonium sulphate) to wheat grown in Syria in three seasons (1991/92, 1992/93 and 1994/95).Recovery of 15N-labelled fertilizer in the above-ground crop at harvest was low (8–22%), with the amount of 15N-labelled fertilizer recovered in the crop increasing as the rate of application increased. Fertilizer application caused a significant increase in the amount of unlabelled soil N in the crop, suggesting that the application of N fertilizer caused a ‘real’ added nitrogen interaction. Recovery of 15N-labelled fertilizer in the crop was unaffected by the form of the fertilizer.On average 31% (14–54%) of the 15N-labelled fertilizer remained in the soil at harvest, mostly in the 0–20 cm layer. At the lowest application rate (30 kg N ha−1) most of the residual fertilizer was as organic N, but at the higher application rates (60 and 90 kg N ha−1), a greater proportion of the 15N-labelled fertilizer was recovered as inorganic N, presumably as the result of top-dressing N in dry conditions in the spring. The amount of 15N-labelled fertilizer remaining in the soil increased as the fertilizer rate increased, but was unaffected by the form of fertilizer applied.Losses of 15N-labelled fertilizer were large (>35%), probably caused by gaseous losses, either through volatilization of N from the calcareous soil, or through denitrification from wet soils rich in organic residues.N fertilization strategies in the West Asia/North Africa (WANA) region should take note of the low recovery of N fertilizer by the crop in the season of application, and the resultant large quantities of residual fertilizer.


2015 ◽  
Vol 154 (3) ◽  
pp. 407-424 ◽  
Author(s):  
I. VOGELER ◽  
G. LUCCI ◽  
M. SHEPHERD

SUMMARYDairy farms are under pressure to increase productivity while reducing environmental impacts. Effective fertilizer management practices are critical to achieve this. In the present study the effect of timing and rate of nitrogen (N) fertilizer application on pasture production and N losses, either via direct leaching of fertilizer N or indirectly through consumption of N in pasture and subsequent excretion via dairy cow grazing, was modelled. The Agricultural Production Systems Simulator (APSIM) was first tested with experimental data from N fertilizer response experiments conducted on a well-drained soil in the Waikato region of New Zealand. The model was then used in a 20-year simulation to investigate the effect of fertilizer management on the impacts on potential N leaching losses. Year-to-year variability was assessed by incorporating 20 years of climate data into the model. Modelling indicated that N fertilization at rates of 140 and 220 kg N/ha/year, applied in four split applications and avoiding application in winter months, could increase pasture yield on average by 2·2–3·0 t dry matter (DM)/ha (25–38%). There were some significant amounts of direct leaching in some years, related to environmental conditions. The maximum loss was as high as 61 kg N/ha at an N application rate of 220 kg N/ha/year, in a year with low pasture production and high rainfall following fertilizer application. In general, however, the risk of direct N leaching from applied fertilizer was low. It seems the main effect of N fertilization is to increase the risk of indirect N leaching, due to increased N intake and excretion. The modelling indicated that the major contribution to increased indirect N leaching risk was from the extra DM grown (more urine deposited per ha). Increased N concentration in the pasture due to fertilization and the resultant extra partitioning of excretal N to urine had only a minor effect on indirect leaching losses. The exception was N fertilizer applied in late winter/early spring (July), where fertilizer N (55 kg/ha) increased pasture N concentration byc. 25%, suggesting that the N concentration in urine patch areas could increase fromc. 550 to 840 kg N/ha. Further measurements are required to test the hypothesis developed from the modelling that the main effect of N fertilizer on urinary N leaching is by increasing DM production rather than increasing pasture N concentration.


2020 ◽  
pp. 1-8
Author(s):  
Tran Kim Ngan Luong ◽  
Frank Forcella ◽  
Sharon A. Clay ◽  
Michael S. Douglass ◽  
Sam E. Wortman

Abrasive weeding is a nonchemical weed control tactic that uses small, gritty materials propelled with compressed air to destroy weed seedlings. Organic fertilizers have been used successfully as abrasive grits to control weeds, but the goal for this study was to explore the effects of fertilizer grit, application rates, and background soil fertility on weeds, plant available nitrogen (N) uptake, and crop yield. Field trials were conducted in organic ‘Carmen’ sweet red pepper (Capsicum annuum) and organic ‘Gypsy’ broccoli (Brassica oleracea var. italica) and treatments included organic fertilizer grit (8N–0.9P–3.3K vs. 3N–3.1P–3.3K), grit application rates (low vs. high), compost amendments (with and without), and weedy and weed-free controls. Weed biomass was harvested at 84 days and 65 days after transplanting for pepper and broccoli, respectively. Simulated total plant available N (nitrate + ammonium) uptake was measured with ion exchange resin stakes between 7 and 49 days after the first of two grit applications. Produce was harvested at maturity, graded for marketability, and weighed. The higher grit application rate, regardless of fertilizer type, reduced the weed biomass by 75% to 89% for pepper and by 86% to 99% for broccoli. By 5 weeks after the first grit application, simulated plant N uptake was greatest following grit application with the 8% N fertilizer, followed by the 3% N fertilizer, and lowest in the weedy control. The high grit application rate of 8% N fertilizer increased pepper yield by 112% compared with the weedy control, but it was similar to that of the weed-free control. Broccoli was less responsive to abrasive grits, with yield changes ranging from no difference to up to a 36% increase (relative to the weedy control) depending on the application rate and compost amendment. This is the first evidence indicating that the nutrient composition of organic fertilizer abrasive grits can influence in-season soil N dynamics, weed competition, and crop yield. The results suggest that abrasive weeding technology could be leveraged to improve the precision of in-season fertilizer management of organic crops.


Sign in / Sign up

Export Citation Format

Share Document