scholarly journals Regulation of Pyridine Nucleotide Metabolism During Tomato Fruit Development Through Transcript and Protein Profiling

2019 ◽  
Vol 10 ◽  
Author(s):  
Guillaume Decros ◽  
Bertrand Beauvoit ◽  
Sophie Colombié ◽  
Cécile Cabasson ◽  
Stéphane Bernillon ◽  
...  
Endocrinology ◽  
2012 ◽  
Vol 153 (7) ◽  
pp. 3258-3268 ◽  
Author(s):  
Donghui Li ◽  
Eric B. Dammer ◽  
Marion B. Sewer

In the human adrenal cortex, cortisol is synthesized from cholesterol by members of the cytochrome P450 superfamily and hydroxysteroid dehydrogenases. Both the first and last steps of cortisol biosynthesis occur in mitochondria. Based on our previous findings that activation of ACTH signaling changes the ratio of nicotinamide adenine dinucleotide (NAD) phosphate to reduced NAD phosphate in adrenocortical cells, we hypothesized that pyridine nucleotide metabolism may regulate the activity of the mitochondrial NAD+-dependent sirtuin (SIRT) deacetylases. We show that resveratrol increases the protein expression and half-life of P450 side chain cleavage enzyme (P450scc). The effects of resveratrol on P450scc protein levels and acetylation status are dependent on SIRT3 and SIRT5 expression. Stable overexpression of SIRT3 abrogates the cellular content of acetylated P450scc, concomitant with an increase in P450scc protein expression and cortisol secretion. Mutation of K148 and K149 to alanine stabilizes the expression of P450scc and results in a 1.5-fold increase in pregnenolone biosynthesis. Finally, resveratrol also increases the protein expression of P450 11β, another mitochondrial enzyme required for cortisol biosynthesis. Collectively, this study identifies a role for NAD+-dependent SIRT deacetylase activity in regulating the expression of mitochondrial steroidogenic P450.


2020 ◽  
Author(s):  
Ricardo Bianchetti ◽  
Nicolas Bellora ◽  
Luis A de Haro ◽  
Rafael Zuccarelli ◽  
Daniele Rosado ◽  
...  

AbstractPhytochrome-mediated light and temperature perception has been shown to be a major regulator of fruit development. Furthermore, chromatin remodelling via DNA demethylation has been described as a crucial mechanism behind the fruit ripening process; however, the molecular basis underlying the triggering of this epigenetic modification remains largely unknown. Here, an integrative analyses of the methylome, siRNAome and transcriptome of tomato fruits from phyA and phyB1B2 null mutants was performed, revealing that PHYB1 and PHYB2 influences genome-wide DNA methylation during fruit development and ripening. The experimental evidence indicates that PHYB1B2 signal transduction relies on a gene expression network that includes chromatin organization factors (DNA methylases/demethylases, histone-modifying enzymes and remodelling factors) and transcriptional regulators, ultimately leading to altered mRNA profile of photosynthetic and ripening-associated genes. This new level of understanding provides insights into the orchestration of epigenetic mechanisms in response to environmental cues affecting agronomical traits in fleshy fruits.


2005 ◽  
Vol 17 (11) ◽  
pp. 2954-2965 ◽  
Author(s):  
Rob Alba ◽  
Paxton Payton ◽  
Zhanjun Fei ◽  
Ryan McQuinn ◽  
Paul Debbie ◽  
...  

Plant Science ◽  
2008 ◽  
Vol 175 (1-2) ◽  
pp. 106-113 ◽  
Author(s):  
Beatriz Cara ◽  
James J. Giovannoni

Sign in / Sign up

Export Citation Format

Share Document