scholarly journals Perspectives on Low Temperature Tolerance and Vernalization Sensitivity in Barley: Prospects for Facultative Growth Habit

2020 ◽  
Vol 11 ◽  
Author(s):  
María Muñoz-Amatriaín ◽  
Javier Hernandez ◽  
Dustin Herb ◽  
P. Stephen Baenziger ◽  
Anne Marie Bochard ◽  
...  

One option to achieving greater resiliency for barley production in the face of climate change is to explore the potential of winter and facultative growth habits: for both types, low temperature tolerance (LTT) and vernalization sensitivity are key traits. Sensitivity to short-day photoperiod is a desirable attribute for facultative types. In order to broaden our understanding of the genetics of these phenotypes, we mapped quantitative trait loci (QTLs) and identified candidate genes using a genome-wide association studies (GWAS) panel composed of 882 barley accessions that was genotyped with the Illumina 9K single-nucleotide polymorphism (SNP) chip. Fifteen loci including 5 known and 10 novel QTL/genes were identified for LTT—assessed as winter survival in 10 field tests and mapped using a GWAS meta-analysis. FR-H1, FR-H2, and FR-H3 were major drivers of LTT, and candidate genes were identified for FR-H3. The principal determinants of vernalization sensitivity were VRN-H1, VRN-H2, and PPD-H1. VRN-H2 deletions conferred insensitive or intermediate sensitivity to vernalization. A subset of accessions with maximum LTT were identified as a resource for allele mining and further characterization. Facultative types comprised a small portion of the GWAS panel but may be useful for developing germplasm with this growth habit.

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Shenping Zhou ◽  
Rongrong Ding ◽  
Fanming Meng ◽  
Xingwang Wang ◽  
Zhanwei Zhuang ◽  
...  

Abstract Background Average daily gain (ADG) and lean meat percentage (LMP) are the main production performance indicators of pigs. Nevertheless, the genetic architecture of ADG and LMP is still elusive. Here, we conducted genome-wide association studies (GWAS) and meta-analysis for ADG and LMP in 3770 American and 2090 Canadian Duroc pigs. Results In the American Duroc pigs, one novel pleiotropic quantitative trait locus (QTL) on Sus scrofa chromosome 1 (SSC1) was identified to be associated with ADG and LMP, which spans 2.53 Mb (from 159.66 to 162.19 Mb). In the Canadian Duroc pigs, two novel QTLs on SSC1 were detected for LMP, which were situated in 3.86 Mb (from 157.99 to 161.85 Mb) and 555 kb (from 37.63 to 38.19 Mb) regions. The meta-analysis identified ten and 20 additional SNPs for ADG and LMP, respectively. Finally, four genes (PHLPP1, STC1, DYRK1B, and PIK3C2A) were detected to be associated with ADG and/or LMP. Further bioinformatics analysis showed that the candidate genes for ADG are mainly involved in bone growth and development, whereas the candidate genes for LMP mainly participated in adipose tissue and muscle tissue growth and development. Conclusions We performed GWAS and meta-analysis for ADG and LMP based on a large sample size consisting of two Duroc pig populations. One pleiotropic QTL that shared a 2.19 Mb haplotype block from 159.66 to 161.85 Mb on SSC1 was found to affect ADG and LMP in the two Duroc pig populations. Furthermore, the combination of single-population and meta-analysis of GWAS improved the efficiency of detecting additional SNPs for the analyzed traits. Our results provide new insights into the genetic architecture of ADG and LMP traits in pigs. Moreover, some significant SNPs associated with ADG and/or LMP in this study may be useful for marker-assisted selection in pig breeding.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 214
Author(s):  
Qinghui Han ◽  
Qingxiang Zhu ◽  
Yao Shen ◽  
Michael Lee ◽  
Thomas Lübberstedt ◽  
...  

Chilling injury poses a serious threat to seed emergence of spring-sowing maize in China, which has become one of the main climatic limiting factors affecting maize production in China. It is of great significance to mine the key genes controlling low-temperature tolerance during seed germination and study their functions for breeding new maize varieties with strong low-temperature tolerance during germination. In this study, 176 lines of the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, which comprised 6618 bin markers, were used for QTL analysis of low-temperature germination ability. The results showed significant differences in germination related traits under optimum-temperature condition (25 °C) and low-temperature condition (10 °C) between two parental lines. In total, 13 QTLs were detected on all chromosomes, except for chromosome 5, 7, 10. Among them, seven QTLs formed five QTL clusters on chromosomes 1, 2, 3, 4, and 9 under the low-temperature condition, which suggested that there may be some genes regulating multiple germination traits at the same time. A total of 39 candidate genes were extracted from five QTL clusters based on the maize GDB under the low-temperature condition. To further screen candidate genes controlling low-temperature germination, RNA-Seq, in which RNA was extracted from the germination seeds of B73 and Mo17 at 10 °C, was conducted, and three B73 upregulated genes and five Mo17 upregulated genes were found by combined analysis of RNA-Seq and QTL located genes. Additionally, the variations of Zm00001d027976 (GLABRA2), Zm00001d007311 (bHLH transcription factor), and Zm00001d053703 (bZIP transcription factor) were found by comparison of amino sequence between B73 and Mo17. This study will provide a theoretical basis for marker-assisted breeding and lay a foundation for further revealing molecular mechanism of low-temperature germination tolerance in maize.


2018 ◽  
Vol 28 (1) ◽  
pp. 166-174 ◽  
Author(s):  
Sara L Pulit ◽  
Charli Stoneman ◽  
Andrew P Morris ◽  
Andrew R Wood ◽  
Craig A Glastonbury ◽  
...  

Abstract More than one in three adults worldwide is either overweight or obese. Epidemiological studies indicate that the location and distribution of excess fat, rather than general adiposity, are more informative for predicting risk of obesity sequelae, including cardiometabolic disease and cancer. We performed a genome-wide association study meta-analysis of body fat distribution, measured by waist-to-hip ratio (WHR) adjusted for body mass index (WHRadjBMI), and identified 463 signals in 346 loci. Heritability and variant effects were generally stronger in women than men, and we found approximately one-third of all signals to be sexually dimorphic. The 5% of individuals carrying the most WHRadjBMI-increasing alleles were 1.62 times more likely than the bottom 5% to have a WHR above the thresholds used for metabolic syndrome. These data, made publicly available, will inform the biology of body fat distribution and its relationship with disease.


2021 ◽  
pp. 245-256
Author(s):  
V. Pomohaibo ◽  
O. Berezan ◽  
A. Petrushov

At present time, on the basis of genome-wide association studies (GWAS), several authors found linkage of phobic disorders with certain regions of chromosomes – 3q26 (agoraphobia), 14q13 (specific phobias), 16q21 (social phobias), 16q22 (social phobias) and 4q31-q34 (phobic disorders). We propose 19 genes that are localized in these regions and are expressed in the brain: PRKCI, CLDN11, EIF5A2, TNIK, CLCN3, CPE, GLRB, GRIA2, NEK1, NPY2R, NPY5R, RAPGEF2,  TRIM2, SMAD1, ADGRG1, BEAN1, CDH8, DOK4 and KATNB1. Therefore, these genes may be investigated as candidate genes of phobic disorders. Various sources propose 26 potential candidate genes of phobic disorders. Finnish geneticist J. Donner carries out a meta-analysis to study the 8 most probable among them and corroborates statistical validity only for 4 genes: ALAD, CDH2, EPB41L4A and GAD1. First three genes are involved in the social phobias, and fourth is involved in whole phobic disorders. Phobias are heterogeneous and multifactorial diseases. To understand the biological mechanisms of such disorders, to create effective methods for their prevention and treatment, there are needed further intensive molecular genetic studies of these disorders on sufficiently large samples and corroborating these results by other authors.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205576 ◽  
Author(s):  
Iulia Blaj ◽  
Jens Tetens ◽  
Siegfried Preuß ◽  
Jörn Bennewitz ◽  
Georg Thaller

2013 ◽  
Vol 20 (6) ◽  
pp. 875-887 ◽  
Author(s):  
Anja Rudolph ◽  
Rebecca Hein ◽  
Sara Lindström ◽  
Lars Beckmann ◽  
Sabine Behrens ◽  
...  

Women using menopausal hormone therapy (MHT) are at increased risk of developing breast cancer (BC). To detect genetic modifiers of the association between current use of MHT and BC risk, we conducted a meta-analysis of four genome-wide case-only studies followed by replication in 11 case–control studies. We used a case-only design to assess interactions between single-nucleotide polymorphisms (SNPs) and current MHT use on risk of overall and lobular BC. The discovery stage included 2920 cases (541 lobular) from four genome-wide association studies. The top 1391 SNPs showing P values for interaction (Pint) <3.0×10−3 were selected for replication using pooled case–control data from 11 studies of the Breast Cancer Association Consortium, including 7689 cases (676 lobular) and 9266 controls. Fixed-effects meta-analysis was used to derive combined Pint. No SNP reached genome-wide significance in either the discovery or combined stage. We observed effect modification of current MHT use on overall BC risk by two SNPs on chr13 near POMP (combined Pint≤8.9×10−6), two SNPs in SLC25A21 (combined Pint≤4.8×10−5), and three SNPs in PLCG2 (combined Pint≤4.5×10−5). The association between lobular BC risk was potentially modified by one SNP in TMEFF2 (combined Pint≤2.7×10−5), one SNP in CD80 (combined Pint≤8.2×10−6), three SNPs on chr17 near TMEM132E (combined Pint≤2.2×10−6), and two SNPs on chr18 near SLC25A52 (combined Pint≤4.6×10−5). In conclusion, polymorphisms in genes related to solute transportation in mitochondria, transmembrane signaling, and immune cell activation are potentially modifying BC risk associated with current use of MHT. These findings warrant replication in independent studies.


2014 ◽  
Vol 66 (4) ◽  
pp. 940-949 ◽  
Author(s):  
Cristina Rodriguez‐Fontenla ◽  
Manuel Calaza ◽  
Evangelos Evangelou ◽  
Ana M. Valdes ◽  
Nigel Arden ◽  
...  

2020 ◽  
Vol 21 (23) ◽  
pp. 9148 ◽  
Author(s):  
David P. Horvath ◽  
Jiaping Zhang ◽  
Wun S. Chao ◽  
Ashok Mandal ◽  
Mukhlesur Rahman ◽  
...  

Information concerning genes and signals regulating cold acclimation processes in plants is abundant; however, less is known about genes and signals regulating the deacclimation process. A population of primarily winter B. napus varieties was used to conduct a genome-wide association study and to compare the transcriptomes from two winter B. napus varieties showing time-dependent differences in response to cold acclimation and deacclimation treatments. These studies helped to identify loci, candidate genes, and signaling processes impacting deacclimation in B. napus. GWAS identified polymorphisms at five different loci associated with freezing tolerance following deacclimation. Local linkage decay rates near these polymorphisms identified 38 possible candidate genes. Several of these genes have been reported as differentially regulated by cold stress in arabidopsis (Arabidopsis thaliana), including a calcium-binding EF-hand family protein (encoded by BnaCnng10250D) that was also differentially expressed during deacclimation in this study. Thousands of other genes differentially expressed during the acclimation and deacclimation treatments implicated processes involving oxidative stress, photosynthesis, light-regulated diurnal responses, and growth regulation. Generally, responses observed during acclimation were reversed within one week of deacclimation. The primary differences between the two winter B. napus varieties with differential deacclimation responses involved protection from oxidative stress and the ability to maintain photosynthesis.


Sign in / Sign up

Export Citation Format

Share Document