scholarly journals Potato Cyst Nematodes: Geographical Distribution, Phylogenetic Relationships and Integrated Pest Management Outcomes in Portugal

2020 ◽  
Vol 11 ◽  
Author(s):  
Maria João Camacho ◽  
Eugénia de Andrade ◽  
Manuel Mota ◽  
Filomena Nobrega ◽  
Claudia Vicente ◽  
...  

The identification and phylogenetic relationships of potato cyst nematodes (PCN) were studied to assess the potential value of geographical distribution information for integrated pest management of potato production in Portugal. This research focused on PCN species, Globodera pallida and Globodera rostochiensis. From 2013 until 2019, 748 soil samples from the rhizosphere of different potato cultivars were surveyed in the Portuguese mainland to detect and identify both species and track their location. PCN are widespread invasive species throughout Portugal. In fact, during the survey period an incidence of 22.5% was estimated for the tested samples. The patterns of infestation vary among regions, increasing from south to north, where PCN were first detected. Currently, both species are present in all potato producing regions of the country, with a greater incidence of G. pallida. Phytosanitary control measures are influencing to the observed results. The use of potato cultivars resistant to G. rostochiensis led to a decrease of this species but had no influence on G. pallida detections, which continues its reproduction freely since there are no effective resistant cultivars for this species. The relationship between the presence, infestation rate, spread and geographical distribution of PCN is discussed in terms of behavioral responses of the potato cultivars and the implications for developing new integrated crop protection measures.

Nematology ◽  
2014 ◽  
Vol 16 (8) ◽  
pp. 937-952 ◽  
Author(s):  
Negin Ebrahimi ◽  
Nicole Viaene ◽  
Kürt Demeulemeester ◽  
Maurice Moens

Potato cyst nematodes (PCN) are the most economically important nematode pests of potato. Early harvesting is part of a preventive management approach for very early potato varieties. In Belgium, tubers are harvested before 20 June because it is assumed that no cyst formation occurs by that date. However, this assumption might not be valid any more because of climate change, the availability of new cultivars (with new traits), and the increasing prevalence of Globodera pallida. Therefore, pot, microplot and field trials were conducted to study the life cycle of PCN in early potato-growing conditions. The development of populations of G. pallida on three potato cultivars, Eersteling (susceptible to PCN), Première (resistant to G. rostochiensis) and Ambassador (partially resistant to G. pallida) and that of G. rostochiensis on cv. Eersteling was monitored in the growth chamber with simulation of field temperatures of the season. On cvs Eersteling and Première, second-stage juveniles (J2), males, females and cysts of G. pallida populations were found 28, 56, 63 and 77 days after infestation with cysts (DAI), respectively. The number of degree days (DD) for G. pallida to complete its life cycle using a base temperature of 4°C was calculated 450 DD4. On cv. Ambassador, females of G. pallida were never observed. J2, males, females and cysts of G. rostochiensis were detected 42, 70, 70 and 84 DAI, respectively. This species needed 398 DD6 at a base temperature of 6°C to complete its life cycle. Observations in two fields and in microplots under prevailing weather conditions in 2013 revealed that cysts of G. pallida and G. rostochiensis were formed on June 12, when the accumulated degree days were 463 DD4 and 401 DD6, respectively. Our observations show that both species of Globodera develop earlier than was assumed based on previous data. Therefore, harvesting based on the accumulated heat above the basal development temperature required by PCN species can replace the set harvest date.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 184
Author(s):  
John Wainer ◽  
Quang Dinh

The scope of this paper is limited to the taxonomy, detection, and reliable morphological and molecular identification of the potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis. It describes the nomenclature, hosts, life cycle, pathotypes, and symptoms of the two species. It also provides detailed instructions for soil sampling and extraction of cysts from soil. The primary focus of the paper is the presentation of accurate and effective methods to identify the two principal PCN species.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0241256
Author(s):  
Daniela Vallejo ◽  
Diego A. Rojas ◽  
John A. Martinez ◽  
Sergio Marchant ◽  
Claudia M. Holguin ◽  
...  

Potato cyst nematodes (PCN) from the genus Globodera spp. cause major losses in the potato (Solanum tuberosum) industry worldwide. Despite their importance, at present little is known about the status of this plant pathogen in cultivated potatoes in Colombia. In this study, a total of 589 samples collected from 75 geographic localities in nine potato producing regions of Colombia (Cundinamarca, Boyacá, Antioquia, Nariño, Santander, Norte de Santander, Tolima, Caldas and Cauca) were assayed for the presence of potato cyst nematodes. Fifty-seven percent of samples tested positive for PCN. Based on phylogenetic analysis of the internal transcribed spacer region (ITS1-5.8S-ITS2) of the rRNA gene and D2-D3 expansion segments of the 28S rRNA gene, all populations but one were identified as Globodera pallida. Sequences of G. pallida from Colombia formed a monophyletic group closely related to Peruvian populations, with the lowest average number of nucleotide substitutions per site (Dxy = 0.002) and net nucleotide substitutions per site (Da = 0.001), when compared to G. pallida populations from Europe, South and North America. A single sample formed a well-supported subclade along with G. rostochiensis and G. tabacum from Japan, USA and Argentina. To our knowledge this is the first comprehensive survey of Globodera populations from Colombia that includes genetic data. Our findings on species diversity and phylogenetic relationships of Globodera populations from Colombia may help elucidate the status and distribution of Globodera species, and lead to the development of accurate management strategies for the potato cyst nematodes.


Nematology ◽  
2011 ◽  
Vol 13 (6) ◽  
pp. 661-672
Author(s):  
Patrick Haydock ◽  
Peter Jones ◽  
Thomas Deliopoulos

AbstractSix potato (Solanum tuberosum) cultivars (Home Guard, Bintje, British Queen, Maris Piper, Pentland Dell and Saturna) were inoculated with Vaminoc (a commercial mixture of three selected arbuscular mycorrhizal fungal (AMF) isolates) and with two of the individual AMF isolates present in Vaminoc, Glomus intraradices (BioRize BB-E) and Glomus mosseae (isolate BEG 12). Root length colonisation by AMF at 6 weeks after shoot emergence ranged from 49 to 54%, with Vaminoc exhibiting the highest percentage. In comparison with control plants, AMF-inoculated plants accelerated the in vitro hatch (21% mean increase) of the potato cyst nematode (PCN) species Globodera pallida (but not of G. rostochiensis) in potato root leachate collected 3 weeks after shoot emergence. The effects of mycorrhization on PCN hatch were broadly similar across the six potato cultivars. This consistency supports the potential use of AMF inoculation of potato plants as part of an integrated pest management strategy for G. pallida.


2011 ◽  
Vol 50 (No. 2) ◽  
pp. 70-74 ◽  
Author(s):  
P. Sedlák ◽  
M. Melounová ◽  
S. Skupinová ◽  
P. Vejl ◽  
J. Domkářová

Potato cyst nematodes (PCN) are the big problem in worldwide planting of potatoes and another Solanaceous plants. Identification of individual pathotypes according to international scheme is very demanding but a very important part of the phytosanitary process to control these pests. Molecular genetic identification of different plant and animal species or individuals is a very interesting way at the present time and let’s hope that it will be important in future. This report presents results of the RAPD study of nine different real PCN populations. There were five Globodera rostochiensis populations and four G. pallida populations. Pathotypes Ro2, Ro2/3, Ro4, Ro5, Pa2 and Pa3 were from European populations; population Ro1 and X were of Czech provenance. Genetics variable of these populations was described by a set of six decameric primers (OPA 07, OPG 03, OPG 05, OPG 08, OPG 10 and OPG 13). Genetic dissimilarity was by Gel Manager for Windows evaluated. Detectable differences behind all populations were found and the dendrogram was compiled. The unknown population X was sorted into group of Globodera pallida species subgroup of Pa2 consequently.


2017 ◽  
Vol 60 (3) ◽  
pp. 647-656 ◽  
Author(s):  
Ingrid Zwertvaegher ◽  
Dieter Foqué ◽  
Donald Dekeyser ◽  
Stephanie Van Weyenberg ◽  
David Nuyttens

Abstract. With the implementation of integrated pest management in the European Union, growers are obliged to manage pests in a manner that minimizes health and environmental risks due to the use of plant protection products. Among other approaches, this goal can be achieved by optimizing spray application techniques. As an alternative to the predominantly used handheld equipment, such as spray guns, spray boom systems might substantially improve spray application, and thus crop protection management, in greenhouses. The aim of this proof-of-concept study was to compare different spray configurations in a spray cabin designed to spray ornamental potted plants that are moving on a conveyor belt. Seven different spray configurations were examined for optimal spray deposition in two crops (azalea and ivy) using mineral chelate tracers. The deposition tests showed that the presented prototype can satisfactorily spray potted plants up to a height of 25 cm including the pot height. The best spray deposition was found with two flat-fan nozzles oriented 35° upward, spraying at 1.0 bar and an application rate of 1047 L ha-1. This configuration increased deposition on the underside of the leaves and at the middle foliage layer compared to the other configurations that were evaluated. The spray cabin with a band spray setting has potential to mitigate the use of plant protection products and achieve a more efficient spray application compared to traditional handheld techniques and broadcast spray boom techniques. Keywords: Crop protection, Integrated pest management, Nozzle type, Spray deposition.


2010 ◽  
Vol 46 (No. 4) ◽  
pp. 171-180 ◽  
Author(s):  
O. Douda ◽  
M. Zouhar ◽  
E. Nováková ◽  
J. Mazáková ◽  
P. Ryšánek

Potato cyst nematodes (Globodera rostochiensis, Globodera pallida) remain a key pest in the main potato growing regions of the Czech Republic. Due to difficult direct management and presence of diverse pathotypes attacking different potato cultivars the rapid and reliable diagnostics is of crucial importance. Currently, efforts are aimed at a description of different pathotypes based on DNA analysis. The main objective of this study was to evaluate the homogeneity of sequences of D2/D3 segments of the 28S rDNA gene obtained from 3 populations of G. rostochiensis and 5 populations of G. pallida and estimate their value for diagnostic purposes. PCR amplification yielded a single fragment of the length of 700 bp approximately in all populations. The alignment score of the vast majority of all pair comparisons of G. rostochiensis and G. pallida populations varied from 98 to 99. In total 14 point deletions and 3 substitutions were observed. The variability of D2/D3 segments of potato cyst nematodes is rather low and this DNA region can be used for diagnostics on a species level because more differences were found after comparing with G. tabacum and G. millefolii sequences obtained from Gene Bank; however the applicability of D2/D3 sequences to routine diagnostics of potato cyst nematodes could be complicated by its similarity to corresponding sequences of the nematode G. artemisiae.


Sign in / Sign up

Export Citation Format

Share Document