scholarly journals Seed Dormancy and Soil Seed Bank of the Two Alpine Primula Species in the Hengduan Mountains of Southwest China

2021 ◽  
Vol 12 ◽  
Author(s):  
De-Li Peng ◽  
Li-E Yang ◽  
Juan Yang ◽  
Zhi-Min Li

The timing of germination has long been recognized as a key seedling survival strategy for plants in highly variable alpine environments. Seed dormancy and germination mechanisms are important factors that determining the timing of germination. To gain an understanding of how these mechanisms help to synchronize the germination event to the beginning of the growing season in two of the most popular Primula species (P. secundiflora and P. sikkimensis) in the Hengduan Mountains, Southwest China, we explored their seed dormancy and germination characteristics in the laboratory and their soil seed bank type in the field. Germination was first tested using fresh seeds at two alternating temperatures (15/5 and 25/15°C) and five constant temperatures (5, 10, 15, 20, and 25°C) in light and dark, and again after dry after-ripening at room temperature for 6 months. Germination tests were also conducted at a range of temperatures (5–30, 25/15, and 15/5°C) in light and dark for seeds dry cold stored at 4°C for 4 years, after which they were incubated under the above-mentioned incubation conditions after different periods (4 and 8 weeks) of cold stratification. Base temperatures (Tb) and thermal times for 50% germination (θ50) were calculated. Seeds were buried at the collection site to test persistence in the soil for 5 years. Dry storage improved germination significantly, as compared with fresh seeds, suggesting after-ripening released physiological dormancy (PD); however, it was not sufficient to break dormancy. Cold stratification released PD completely after dry storage, increasing final germination, and widening the temperature range from medium to both high and low; moreover, the Tb and θ50 for germination decreased. Fresh seeds had a light requirement for germination, facilitating formation of a persistent soil seed bank. Although the requirement reduced during treatments for dormancy release or at lower alternating temperatures (15/5°C), a high proportion of viable seeds did not germinate even after 5 years of burial, showing that the seeds of these two species could cycle back to dormancy if the conditions were unfavorable during spring. In this study, fresh seeds of the two Primula species exhibited type 3 non-deep physiological dormancy and required light for germination. After dormancy release, they had a low thermal requirement for germination control, as well as rapid seed germination in spring and at/near the soil surface from the soil seed bank. Such dormancy and germination mechanisms reflect a germination strategy of these two Primula species, adapted to the same alpine environments.

Forests ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 319
Author(s):  
Yuhan Tang ◽  
Keliang Zhang ◽  
Yin Zhang ◽  
Jun Tao

Sorbus alnifolia (Siebold & Zucc.) K.Koch (Rosaceae) is an economically important tree in the temperate forests of Eastern China. In recent decades, ever-increasing use and modification of forestlands have resulted in major degeneration of the natural habitat of S. alnifolia. Moreover, S. alnifolia seeds germinate in a complicated way, leading to a high cost of propagation. The current study aimed to determine the requirements for breaking seed dormancy and for germination as well as to characterize the type of seed dormancy present in this species. Moreover, the roles of temperature, cold/warm stratification, and gibberellic acid (GA3) in breaking dormancy were tested combined with a study of the soil seed bank. The results showed that intact seeds of S. alnifolia were dormant, requiring 150 days of cold stratification to achieve the maximum germination percentage at 5/15 °C. Exposure of the seeds to ranges of temperatures at 15/25 °C and 20/30 °C resulted in secondary dormancy. Scarifying seed coat and partial removal of the cotyledon promoted germination. Compared with long-term cold stratification, one month of warm stratification plus cold stratification was superior in breaking dormancy. Application of GA3 did not break the dormancy during two months of incubation. Seeds of S. alnifolia formed a transient seed bank. The viability of freshly matured S. alnifolia seeds was 87.65% ± 11.67%, but this declined to 38.25% after 6-months of storage at room temperature. Seeds of S. alnifolia have a deep physiological dormancy; cold stratification will be useful in propagating this species. The long chilling requirements of S. alnifolia seeds would avoid seedling death in winter.


2000 ◽  
Vol 77 (12) ◽  
pp. 1769-1776 ◽  
Author(s):  
Jeffrey L Walck ◽  
Carol C Baskin ◽  
Jerry M Baskin

Seeds of the eastern North American herbaceous polycarpic perennial Thalictrum mirabile Small have differentiated but underdeveloped (small) embryos that are physiologically dormant at maturity in September. Physiological dormancy was broken effectively by cold stratification at 1°C, but embryos required temperatures [Formula: see text]15:6°C for growth after physiological dormancy was broken. Gibberellic acid substituted for cold stratification. Breaking of physiological dormancy in seeds exposed to natural temperatures in a greenhouse occurred during winter, and embryo growth and germination occurred in late winter - early spring. Furthermore, seeds in the greenhouse remained viable until the second and third (spring) germination seasons. Thus, T. mirabile seeds have the capacity to form a short-lived persistent soil seed bank. Buried seeds of T. mirabile apparently go through an annual dormancy-nondormancy cycle. Seeds buried in September 1994 were nondormant when exhumed in April 1995 and April 1996 and incubated in light at 25:15°C for 2 weeks, but they were dormant in June 1995 and September 1995. Seeds of T. mirabile have nondeep simple morphophysiogical dormancy. This is the first report of nondeep simple morphophysiological dormancy being broken by cold, and not by warm, stratification.


2015 ◽  
Vol 25 (2) ◽  
pp. 159-169 ◽  
Author(s):  
Ziyue Huang ◽  
Hulya Ölçer-Footitt ◽  
Steven Footitt ◽  
William E. Finch-Savage

AbstractSeeds have evolved to be highly efficient environmental sensors that respond not only to their prevailing environment, but also their environmental history, to regulate dormancy and the initiation of germination. In the present work we investigate the combined impact of a number of environmental signals (temperature, nitrate, light) during seed development on the mother plant, during post-shedding imbibition and during prolonged post-shedding exposure in both dry and imbibed states, simulating time in the soil seed bank. The differing response to these environments was observed in contrasting winter (Cvi, Ler) and summer (Bur) annual Arabidopsis ecotypes. Results presented show that environmental signals both pre- and post-shedding determine the depth of physiological dormancy and therefore the germination response to the ambient environment. The ecotype differences in seed response to ambient germination conditions are greatly enhanced by seed maturation in different environments. Further variation in response develops following shedding when seeds do not receive the full complement of environmental signals required for germination and enter the soil seed bank in either dry or imbibed states. Species seed dormancy characteristics cannot therefore be easily defined, as seed dormancy is a dynamic state subject to within-species adaptation to local environments.


Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1765
Author(s):  
Wei Zhang ◽  
Lian-Wei Qu ◽  
Jun Zhao ◽  
Li Xue ◽  
Han-Ping Dai ◽  
...  

The innate physiological dormancy of Tulipa thianschanica seeds ensures its survival and regeneration in the natural environment. However, the low percentage of germination restricts the establishment of its population and commercial breeding. To develop effective ways to break dormancy and improve germination, some important factors of seed germination of T. thianschanica were tested, including temperature, gibberellin (GA3) and/or kinetin (KT), cold stratification and sowing depth. The percentage of germination was as high as 80.7% at a constant temperature of 4 °C, followed by 55.6% at a fluctuating temperature of 4/16 °C, and almost no seeds germinated at 16 °C, 20 °C and 16/20 °C. Treatment with exogenous GA3 significantly improved the germination of seeds, but KT had a slight effect on the germination of T. thianschanica seeds. The combined treatment of GA3 and KT was more effective at enhancing seed germination than any individual treatment, and the optimal hormone concentration for the germination of T. thianschanica seeds was 100 mg/L GA3 + 10 mg/L KT. In addition, it took at least 20 days of cold stratification to break the seed dormancy of T. thianschanica. The emergence of T. thianschanica seedlings was the highest with 82.4% at a sowing depth of 1.5 cm, and it decreased significantly at a depth of >3.0 cm. This study provides information on methods to break dormancy and promote the germination of T. thianschanica seeds.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 490
Author(s):  
Saeng Geul Baek ◽  
Jin Hyun Im ◽  
Myeong Ja Kwak ◽  
Cho Hee Park ◽  
Mi Hyun Lee ◽  
...  

This study aimed to determine the type of seed dormancy and to identify a suitable method of dormancy-breaking for an efficient seed viability test of Lysimachia coreana Nakai. To confirm the effect of gibberellic acid (GA3) on seed germination at different temperatures, germination tests were conducted at 5, 15, 20, 25, 20/10, and 25/15 °C (12/12 h, light/dark), using 1% agar with 100, 250, and 500 mg·L−1 GA3. Seeds were also stratified at 5 and 25/15 °C for 6 and 9 weeks, respectively, and then germinated at the same temperature. Seeds treated with GA3 demonstrated an increased germination rate (GR) at all temperatures except 5 °C. The highest GR was 82.0% at 25/15 °C and 250 mg·L−1 GA3 (4.8 times higher than the control (14.0%)). Additionally, GR increased after cold stratification, whereas seeds did not germinate after warm stratification at all temperatures. After cold stratification, the highest GR was 56.0% at 25/15 °C, which was lower than the GR observed after GA3 treatment. We hypothesized that L. coreana seeds have a non-deep physiological dormancy and concluded that 250 mg·L−1 GA3 treatment is more effective than cold stratification (9 weeks) for L. coreana seed-dormancy-breaking.


2019 ◽  
Vol 41 (5) ◽  
pp. 383 ◽  
Author(s):  
Vinod K. Chejara ◽  
Paul Kristiansen ◽  
R. D. B. (Wal) Whalley ◽  
Brian M. Sindel ◽  
Christopher Nadolny

Hyparrhenia hirta (L.) Stapf (also known as Coolatai grass, South African bluestem or thatching grass) has become a serious invasive weed in Australia. Within its native range, it is generally regarded as a useful grass particularly for thatching, and seed production is low with a low soil seed bank of from 2 to 200seedsm–2. Several hundred accessions of H. hirta were deliberately introduced into Australia up until the 1980s and nearly all were discarded because of poor seed production. However, at least one introduction in the 1890s in northern New South Wales (NSW), Australia, has possibly contributed to the present serious weed problem. Annual seed production from roadside stands in northern NSW ranged from 7000 to 92000seedsm–2 in 2015. The soil seed bank under dense H. hirta infestations in the same region in 2006 and 2007, was found to be ~30000seedsm–2 mostly confined to the top 2cm, with few dormant seeds and a large reduction of these numbers over the next 12 months when further seed input was prevented. Similar studies of other perennial grass weeds have found seed banks of similar sizes, but dormancy mechanisms ensure that their seed banks last for at least 10 years without further seed input. These results suggest that the present weedy populations of H. hirta have dramatically increased fecundity enabling a large seed bank to develop beneath dense stands. The development of seed dormancy and consequently a long-lived seed bank would make this weed even more difficult to control. Until seed dormancy develops, control of H. hirta in northern NSW can be effective provided further input into the seed bank can be prevented.


PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112579 ◽  
Author(s):  
Xiao Wen Hu ◽  
Yan Pei Wu ◽  
Xing Yu Ding ◽  
Rui Zhang ◽  
Yan Rong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document