scholarly journals Transpiration Rate of White Clover (Trifolium repens L.) Cultivars in Drying Soil

2021 ◽  
Vol 12 ◽  
Author(s):  
Lucy Egan ◽  
Rainer Hofmann ◽  
Shirley Nichols ◽  
Jonathan Hadipurnomo ◽  
Valerio Hoyos-Villegas

Determining the performance of white clover cultivars under drought conditions is critical in dry climates. However, comparing the differences in cultivar performance requires equivalent soil water content for all plants, to reduce the water deficit threshold eliciting stomatal closure. In this study, the objective was to compare the rate of stomatal closure in eighty white clover cultivars in response to soil drying. Two glasshouse experiments were conducted, and the daily transpiration rate was measured by weighing each pot. The transpiration rate of the drought-stressed plants were normalized against the control plants to minimize effects from transpiration fluctuations and was recorded as the normalized transpiration rate (NTR). The daily soil water content was expressed as the fraction of transpirable soil water (FTSW). The FTSW threshold (FTSWc) was estimated after which the NTR decreases linearly. The FTSWc marks the critical point where the stomata start to close, and transpiration decreases linearly. The significant difference (p < 0.05) between the 10 cultivars with the highest and lowest FTSWc demonstrates the cultivars would perform better in short- or long-term droughts.

2000 ◽  
Vol 40 (1) ◽  
pp. 37 ◽  
Author(s):  
S. J. Lolicato

Fortnightly soil water content measurements to a depth of 2.1 m under 4 cocksfoot cultivars, 2 phalaris cultivars, 2 lucerne cultivars and 1 Lotus corniculatus cultivar were used to compare soil profile drying and to define seasonal patterns of plant water use of the species over a 3-year period, on a duplex soil. Cultivars were also selected, within species groups, for varying seasonal growth patterns to assess this influence on soil water dynamics and growth. Over the 3-year period, treatments with the highest and lowest measures of profile soil water content were used to derive and compare values of maximum plant extractable water. Plots were maintained for a further 3 years, after which soil water content measurements in autumn were used to assess long-term effects of the treatments. The effect of seasonal growth patterns within a species was negligible; however, there were significant differences between species. Twenty-one months after pasture establishment, lucerne alone had a drying effect at 2.0 m depth and subsequently it consistently showed profiles with the lowest soil water content. Maximum plant extractable water was greatest for lucerne (230 mm), followed by phalaris (210 mm), Lotus corniculatus (200 mm) and cocksfoot (170 mm). Profiles with the lowest soil water content were associated with greater herbage growth and greater depths of water extraction. The soil water deficits developed by the treatments in autumn of the fourth year were similar to those measured in autumn of the seventh year, implying that a species-dependant equilibrium had been reached. Long-term rainfall data is used to calculate the probabilities of recharge occurring when rainfall exceeds maximum potential deficits for the different pasture species.


2014 ◽  
Vol 94 (3) ◽  
pp. 435-452 ◽  
Author(s):  
S. Liu ◽  
J. Y. Yang ◽  
C. F. Drury ◽  
H. L. Liu ◽  
W. D. Reynolds

Liu, S., Yang, J. Y., Drury, C. F., Liu, H. L. and Reynolds, W. D. 2014. Simulating maize (Zea mays L.) growth and yield, soil nitrogen concentration, and soil water content for a long-term cropping experiment in Ontario, Canada. Can. J. Soil Sci. 94: 435–452. A performance assessment of the Decision Support Systems for Agrotechnology Transfer (DSSAT) model (v4.5) including the CERES-Maize and CENTURY modules was conducted for continuous maize production under annual synthetic fertilization (CC-F) and no fertilization (CC-NF) using field data from a long-term (53-yr) cropping experiment in Ontario, Canada. The assessment was based on the accuracy with which DSSAT could simulate measured grain yield, above-ground biomass, leaf area index (LAI), soil inorganic nitrogen concentration, and soil water content. Model calibration for maize cultivar was achieved using grain yield measurements from CC-F between 2007 and 2012, and model evaluation was achieved using soil and crop measurements from both CC-F and CC-NF for the same 6-yr period. Good model–data agreement for CC-F grain yields was achieved for calibration (index of agreement, d=0.99), while moderate agreement for CC-NF grain yields was achieved for evaluation (d=0.79). Model–data agreement for above-ground biomass was good (d=0.83–1.00), but the model consistently underestimated for CC-F and overestimated for CC-NF. DSSAT achieved good model–data agreement for LAI in CC-F (d=0.82–0.99), but moderate to poor agreement in CC-NF (d=0.46–0.64). The CENTURY module of DSSAT simulated soil inorganic nitrogen concentrations with moderate to good model–data agreement in CC-F (d=0.74–0.88), but poor agreement in CC-NF (d=0.40–0.50). The model–data agreement for soil water content was moderate in 2007 and 2008 for both treatments (d=0.60–0.76), but poor in 2009 (d=0.46–0.53). It was concluded that the DSSAT cropping system model provided generally good to moderate simulations of continuous maize production (yield, biomass, LAI) for a long-term cropping experiment in Ontario, Canada, but generally moderate to poor simulations of soil inorganic nitrogen concentration and soil water content.


Soil Research ◽  
2004 ◽  
Vol 42 (3) ◽  
pp. 289 ◽  
Author(s):  
Dieter Geesing ◽  
Martin Bachmaier ◽  
Urs Schmidhalter

Soil water research requires methods to perform accurate measurements. A capacitance probe gauge has characteristics that seem to make it an attractive replacement for neutron scatter gauges to measure soil water content, but there is evidence that capacitance systems should be calibrated for individual soils. Laboratory calibrations and many field calibration methods are costly and time-consuming, and controlled conditions and disturbed soil samples do not always reflect field conditions, and thus, they are inadequate for practical use. The objectives of the present study were (i) to test a simple field calibration method for a recently developed capacitive sensor even under highly variable soil texture conditions, and (ii) to validate this approach under various soil moisture conditions. Soil samples were taken 0.5 m from the access tube of the sensor and a whole field calibration and several site-specific calibrations were developed using 10–142 observations per site under different soil water regimes. A regression of soil water content estimated by sensor reading on water content obtained by core sampling showed no significant difference in the slope and intercept of the 1:1 line when the field calibration was applied. However, the precision of the calibration was only considerably increased if the estimations were based on site-specific calibrations developed on at least 35 observations per site. The precision and accuracy of the calibration equations were not affected when data were obtained only under wet or dry soil conditions. The method presented in this paper is a speedy and cheap way to calibrate capacitance probe sensors.


2001 ◽  
Vol 37 (11) ◽  
pp. 2847-2851 ◽  
Author(s):  
M. S. Seyfried ◽  
M. D. Murdock ◽  
C. L. Hanson ◽  
G. N. Flerchinger ◽  
S. Van Vactor

2020 ◽  
Author(s):  
Itamar Shabtai ◽  
Srabani Das ◽  
Thiago Inagaki ◽  
Johannes Lehmann

HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 490C-490
Author(s):  
Bingru Huang ◽  
Hongwen Gao

To investigate shoot physiological responses to drought stress of six tall fescue (Festuca arundinacea) cultivars representing several generations of turfgrass improvement, forage-type `Kentucky-31', turf-type `Phoenix', `Phoenix', and `Houndog V', and dwarf-type `Rebel Jr` and `Bonsai' were grown in well-watered or drying soil for 35 days in a greenhouse. Net photosynthetic rate (Pn), stomatal conductance (gs), transpiration rate (Tr), relative water content (RWC), and photochemical efficiency (Fv/Fm) declined during drought progression in all cultivars, but the time and the severity of reductions varied with cultivars and physiological factors. Pn, RWC, gs, and Tr decreased significantly for `Rebel Jr', `Bonsai', and `Phoenix' when soil water content declined to 20% after 9 days of treatment (DOT) and for `Falcon II', `Houndog V', and `Kentucky-31' when soil water content dropped to 10% at 15 DOT. A significant decrease in Fv/Fm was not observed in drought-stressed plants until 21 DOT for `Rebel Jr', `Bonsai', and `Phoenix' and 28 DOT for `Houndog V', `Kentucky-31', and `Falcon II'. The decline in Pn was due mostly to internal water deficit and stomatal closure under short-term or mild drought-stress conditions. After a prolonged period of drought (35 DOT), higher Pn in `Falcon II', `Houndog V', and `Kentucky-31' could be attributed to their higher Fv/Fm.


2020 ◽  
Vol 8 ◽  
Author(s):  
Guohua Wang ◽  
Qianqian Gou ◽  
Yulian Hao ◽  
Huimin Zhao ◽  
Xiafang Zhang

An understanding of soil water content dynamics is important for vegetation restoration in an arid desert-oasis ecotone under different landscapes. In this study, the dynamics of soil water content under three typical landscapes (i.e., desert, sand-binding shrubland, and farmland shelter woodland) were investigated in the Hexi Corridor, northwest China, during the growing season from 2002 to 2013. The results showed that the soil water content in the deep layers decreased from 20–30% to a stable low level of 3–5% in the desert and shrubland. For the farmland shelter woodland, the soil water content at the deep layers also decreased, but the decrease rate was much smaller than the desert and shrubland. The decrease of soil water content in the deep soil layers among desert–shrubland–woodland was strongly associated with the increase of groundwater depths. The greatest increase of groundwater depths mainly occurred during 2008–2011, while the largest decrease of soil water content took place during the years 2009–2011, with a time-lag in response to increase in groundwater depths. This study provides new insight into the long-term dynamics of soil water content in a typical desert oasis ecotone under different landscape components from the influence of overexploiting groundwater that cannot be inferred from a short-term study. The findings demonstrate that the sharp increase of groundwater depths could be the main reason behind the reduction of soil water content in the clay interlayers, and sustainable development of groundwater resources exploitation is very important for the management of desert-oasis ecotone from a long-term perspective.


2010 ◽  
Vol 56 (No. 9) ◽  
pp. 408-411 ◽  
Author(s):  
C.Y. Song ◽  
X.Y. Zhang ◽  
X.B. Liu ◽  
Y.Y. Sui ◽  
Z.L. Li

Soil water content under no fertilizer (NF), fertilizer (F) (N:30; P<sub>2</sub>O<sub>5</sub>: 45 kg/ha), and fertilizer plus pig manure (FO) (N:30; P<sub>2</sub>O<sub>5</sub>: 45 kg/ha; pig manure 15 000 kg/ha in 2003; and 30 000 kg/ha in 2004 and 2005) treatments was measured using neutron probe instrument for a period three years in a long term field experiment in order to investigate the impact of different fertilization treatments on Haploborolls soil water content. Fertilization had significant effects on the soil water content. FO treatment had greater soil water content in 10 cm depth than F treatment with average 9.9% increase (P &lt; 0.05) but lower than NF treatment; however, in the depth from 30 to 90 cm, there was no water content difference between F and FO treatments. Treatment with organic amendments reduced total soil water content on the long term experiment basis. Across the three years, no fertilizer treatment had total soil water content higher by 1.2% and 3.1% than fertilizer treatment and fertilizer plus pig manure treatment within 10 to 210 cm soil profile in most of the months, respectively.


2004 ◽  
Vol 57 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Xin Rong Li ◽  
Feng Yun Ma ◽  
Hong Lang Xiao ◽  
Xin Ping Wang ◽  
Ke Chung Kim

Sign in / Sign up

Export Citation Format

Share Document