scholarly journals Global Identification of ANTH Genes Involved in Rice Pollen Germination and Functional Characterization of a Key Member, OsANTH3

2021 ◽  
Vol 12 ◽  
Author(s):  
Su Kyoung Lee ◽  
Woo-Jong Hong ◽  
Jeniffer Silva ◽  
Eui-Jung Kim ◽  
Soon Ki Park ◽  
...  

Pollen in angiosperms plays a critical role in double fertilization by germinating and elongating pollen tubes rapidly in one direction to deliver sperm. In this process, the secretory vesicles deliver cell wall and plasma membrane materials, and excessive materials are sequestered via endocytosis. However, endocytosis in plants is poorly understood. AP180 N-terminal homology (ANTH) domain-containing proteins function as adaptive regulators for clathrin-mediated endocytosis in eukaryotic systems. Here, we identified 17 ANTH domain-containing proteins from rice based on a genome-wide investigation. Motif and phylogenomic analyses revealed seven asparagine-proline-phenylalanine (NPF)-rich and 10 NPF-less subgroups of these proteins, as well as various clathrin-mediated endocytosis-related motifs in their C-terminals. To investigate their roles in pollen germination, we performed meta-expression analysis of all genes encoding ANTH domain-containing proteins in Oryza sativa (OsANTH genes) in anatomical samples, including pollen, and identified five mature pollen-preferred OsANTH genes. The subcellular localization of four OsANTH proteins that were preferentially expressed in mature pollen can be consistent with their role in endocytosis in the plasma membrane. Of them, OsANTH3 represented the highest expression in mature pollen. Functional characterization of OsANTH3 using T-DNA insertional knockout and gene-edited mutants revealed that a mutation in OsANTH3 decreased seed fertility by reducing the pollen germination percentage in rice. Thus, our study suggests OsANTH3-mediated endocytosis is important for rice pollen germination.

2012 ◽  
Vol 7 (12) ◽  
pp. 1648-1652 ◽  
Author(s):  
Mineo Shibasaka ◽  
Sizuka Sasano ◽  
Sigeko Utsugi ◽  
Maki Katsuhara

Author(s):  
Zhongwei Zou ◽  
Fei Liu ◽  
Shuanglong Huang ◽  
DILANTHA GERARD FERNANDO

Proteins containing Valine-glutamine (VQ) motifs play important roles in plant growth and development, as well as in defense responses to both abiotic and biotic stresses. Blackleg disease, which is caused by Leptosphaeria maculans, is the most important disease in canola (Brassica napus L.) worldwide. H; however, the identification of B. napus VQs and their functions in response to blackleg disease have not yet been reported. In this study, we conducted a genome genome-wide identification and characterization of the VQ gene family in B. napus, including chromosome location, phylogenetic relations, gene structure, motif domain, synteny analysis, and cis-elements categorization of their promoter regions. To understand B. napus VQ gene function in response to blackleg disease, we overexpressed BnVQ7 (BnaA01g36880D, also known as the mitogen-activated protein kinase4 substrate1 (MKS1) gene) in a blackleg-susceptible canola variety Westar. Overexpression The overexpression of BnMKS1 in canola did not improve its resistance to blackleg disease at the seedling stage. H; however, transgenic canola plants overexpressing BnMKS1 displayed an enhanced resistance to L. maculans infection at the adult plant stage. Expression levels of downstream and defense marker genes in cotyledons increased significantly at the necrotrophic stage of L. maculans infection in the overexpression line of BnMKS1, suggesting that the SA salicylic acid (SA)- and jasmonic acid (JA )-mediated signaling pathways were both involved in the defense responses. Together, these results suggest that BnMKS1 might play an important role in the defense against L. maculans.


2019 ◽  
Vol 36 (12) ◽  
pp. 2805-2812
Author(s):  
Aaron Hardin ◽  
Kimberly A Nevonen ◽  
Walter L Eckalbar ◽  
Lucia Carbone ◽  
Nadav Ahituv

Abstract Mastomys are the most widespread African rodent and carriers of various diseases such as the plague or Lassa virus. In addition, mastomys have rapidly gained a large number of mammary glands. Here, we generated a genome, variome, and transcriptomes for Mastomys coucha. As mastomys diverged at similar times from mouse and rat, we demonstrate their utility as a comparative genomic tool for these commonly used animal models. Furthermore, we identified over 500 mastomys accelerated regions, often residing near important mammary developmental genes or within their exons leading to protein sequence changes. Functional characterization of a noncoding mastomys accelerated region, located in the HoxD locus, showed enhancer activity in mouse developing mammary glands. Combined, our results provide genomic resources for mastomys and highlight their potential both as a comparative genomic tool and for the identification of mammary gland number determining factors.


2010 ◽  
Vol 38 (7) ◽  
pp. 4813-4822 ◽  
Author(s):  
Xin Wang ◽  
Ru Yang ◽  
Baichen Wang ◽  
Guifeng Liu ◽  
Chuanping Yang ◽  
...  

Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 458
Author(s):  
Wanting Zhang ◽  
Jingxue Li ◽  
Junhui Dong ◽  
Yan Wang ◽  
Liang Xu ◽  
...  

Radish is a kind of moderately salt-sensitive vegetable. Salt stress seriously decreases the yield and quality of radish. The plasma membrane Na+/H+ antiporter protein Salt Overly Sensitive 1 (SOS1) plays a crucial role in protecting plant cells against salt stress, but the biological function of the RsSOS1 gene in radish remains to be elucidated. In this study, the RsSOS1 gene was isolated from radish genotype ‘NAU-TR17’, and contains an open reading frame of 3414 bp encoding 1137 amino acids. Phylogenetic analysis showed that RsSOS1 had a high homology with BnSOS1, and clustered together with Arabidopsis plasma membrane Na+/H+ antiporter (AtNHX7). The result of subcellular localization indicated that the RsSOS1 was localized in the plasma membrane. Furthermore, RsSOS1 was strongly induced in roots of radish under 150 mmol/L NaCl treatment, and its expression level in salt-tolerant genotypes was significantly higher than that in salt-sensitive ones. In addition, overexpression of RsSOS1 in Arabidopsis could significantly improve the salt tolerance of transgenic plants. Meanwhile, the transformation of RsSOS1△999 could rescue Na+ efflux function of AXT3 yeast. In summary, the plasma membrane Na+/H+ antiporter RsSOS1 plays a vital role in regulating salt-tolerance of radish by controlling Na+ homeostasis. These results provided useful information for further functional characterization of RsSOS1 and facilitate clarifying the molecular mechanism underlying salt stress response in radish.


2011 ◽  
Vol 286 (12) ◽  
pp. 10419-10428 ◽  
Author(s):  
Rasmus J. N. Frandsen ◽  
Claes Schütt ◽  
Birgitte W. Lund ◽  
Dan Staerk ◽  
John Nielsen ◽  
...  

Previous studies have reported the functional characterization of 9 out of 11 genes found in the gene cluster responsible for biosynthesis of the polyketide pigment aurofusarin in Fusarium graminearum. Here we reanalyze the function of a putative aurofusarin pump (AurT) and the two remaining orphan genes, aurZ and aurS. Targeted gene replacement of aurZ resulted in the discovery that the compound YWA1, rather than nor-rubrofusarin, is the primary product of F. graminearum polyketide synthase 12 (FgPKS12). AurZ is the first representative of a novel class of dehydratases that act on hydroxylated γ-pyrones. Replacement of the aurS gene resulted in accumulation of rubrofusarin, an intermediate that also accumulates when the GIP1, aurF, or aurO genes in the aurofusarin cluster are deleted. Based on the shared phenotype and predicted subcellular localization, we propose that AurS is a member of an extracellular enzyme complex (GIP1-AurF-AurO-AurS) responsible for converting rubrofusarin into aurofusarin. This implies that rubrofusarin, rather than aurofusarin, is pumped across the plasma membrane. Replacement of the putative aurofusarin pump aurT increased the rubrofusarin-to- aurofusarin ratio, supporting that rubrofusarin is normally pumped across the plasma membrane. These results provide functional information on two novel classes of proteins and their contribution to polyketide pigment biosynthesis.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Cuiling Yuan ◽  
Chunjuan Li ◽  
Xiaodong Lu ◽  
Xiaobo Zhao ◽  
Caixia Yan ◽  
...  

Abstract Background Peanut is one of the most important oil crop species worldwide. NAC transcription factor (TF) genes play important roles in the salt and drought stress responses of plants by activating or repressing target gene expression. However, little is known about NAC genes in peanut. Results We performed a genome-wide characterization of NAC genes from the diploid wild peanut species Arachis duranensis and Arachis ipaensis, which included analyses of chromosomal locations, gene structures, conserved motifs, expression patterns, and cis-acting elements within their promoter regions. In total, 81 and 79 NAC genes were identified from A. duranensis and A. ipaensis genomes. Phylogenetic analysis of peanut NACs along with their Arabidopsis and rice counterparts categorized these proteins into 18 distinct subgroups. Fifty-one orthologous gene pairs were identified, and 46 orthologues were found to be highly syntenic on the chromosomes of both A. duranensis and A. ipaensis. Comparative RNA sequencing (RNA-seq)-based analysis revealed that the expression of 43 NAC genes was up- or downregulated under salt stress and under drought stress. Among these genes, the expression of 17 genes in cultivated peanut (Arachis hypogaea) was up- or downregulated under both stresses. Moreover, quantitative reverse transcription PCR (RT-qPCR)-based analysis revealed that the expression of most of the randomly selected NAC genes tended to be consistent with the comparative RNA-seq results. Conclusion Our results facilitated the functional characterization of peanut NAC genes, and the genes involved in salt and drought stress responses identified in this study could be potential genes for peanut improvement.


2008 ◽  
Vol 473 (1) ◽  
pp. 8-15 ◽  
Author(s):  
Haixia Xu ◽  
Xingyu Jiang ◽  
Kehui Zhan ◽  
Xiyong Cheng ◽  
Xinjian Chen ◽  
...  

2012 ◽  
Vol 40 (6) ◽  
pp. 1291-1294 ◽  
Author(s):  
Ricardo O. Louro ◽  
Catarina M. Paquete

Shewanella oneidensis MR-1 is a sediment organism capable of dissimilatory reduction of insoluble metal compounds such as those of Fe(II) and Mn(IV). This bacterium has been used as a model organism for potential applications in bioremediation of contaminated environments and in the production of energy in microbial fuel cells. The capacity of Shewanella to perform extracellular reduction of metals is linked to the action of several multihaem cytochromes that may be periplasmic or can be associated with the inner or outer membrane. One of these cytochromes is CymA, a membrane-bound tetrahaem cytochrome localized in the periplasm that mediates the electron transfer between the quinone pool in the cytoplasmic membrane and several periplasmic proteins. Although CymA has the capacity to regulate multiple anaerobic respiratory pathways, little is known about the structure and functional mechanisms of this focal protein. Understanding the structure and function of membrane proteins is hampered by inherent difficulties associated with their purification since the choice of the detergents play a critical role in the protein structure and stability. In the present mini-review, we detail the current state of the art in the characterization of CymA, and add recent information on haem structural behaviour for CymA solubilized in different detergents. These structural differences are deduced from NMR spectroscopy data that provide information on the geometry of the haem axial ligands. At least two different conformational forms of CymA are observed for different detergents, which seem to be related to the micelle size. These results provide guidance for the discovery of the most promising detergent that mimics the native lipid bilayer and is compatible with biochemical and structural studies.


2008 ◽  
Vol 295 (4) ◽  
pp. C944-C953 ◽  
Author(s):  
Angela Goytain ◽  
Rochelle M. Hines ◽  
Gary A. Quamme

We used microarray analysis to identify renal cell transcripts that were upregulated with low magnesium. One transcript, identified as NIPA2 (nonimprinted in Prader-Willi/Angelman syndrome) subtype 2, was increased over twofold relative to cells cultured in normal magnesium. The deduced sequence comprises 129 amino acids with 8 predicted transmembrane regions. As the secondary structure of NIPA2 conformed to a membrane transport protein, we expressed it in Xenopus oocytes and determined that it mediated Mg2+ uptake with two-electrode voltage-clamp and fluorescence studies. Mg2+ transport was electrogenic, voltage dependent, and saturable, demonstrating a Michaelis affinity constant of 0.31 mM. Unlike other reported Mg2+ transporters, NIPA2 was very selective for the Mg2+ cation. NIPA2 mRNA is found in many tissues but particularly abundant in renal cells. With the use of immunofluorescence, it was shown that NIPA2 protein was normally localized to the early endosomes and plasma membrane and was recruited to the plasma membrane in response to low extracellular magnesium. We conclude that NIPA2 plays a role in magnesium metabolism and regulation of renal magnesium conservation.


Sign in / Sign up

Export Citation Format

Share Document