scholarly journals A Mobile NMR Sensor and Relaxometric Method to Non-destructively Monitor Water and Dry Matter Content in Plants

2021 ◽  
Vol 12 ◽  
Author(s):  
Carel W. Windt ◽  
Moritz Nabel ◽  
Johannes Kochs ◽  
Siegfried Jahnke ◽  
Ulrich Schurr

Water content (WC) and dry matter content (DMC) are some of the most basic parameters to describe plant growth and yield, but are exceptionally difficult to measure non-invasively. Nuclear Magnetic Resonance (NMR) relaxometry may fill this methodological gap. It allows non-invasive detection of protons in liquids and solids, and on the basis of these measures, can be used to quantify liquid and dry matter contents of seeds and plants. Unfortunately, most existing NMR relaxometers are large, unwieldy and not suitable to measure intact plants or to be used under field conditions. In addition, currently the appropriate NMR relaxometric methods are poorly suited for non-expert use. We here present a novel approach to overcome these drawbacks. We demonstrate that a basic NMR relaxometer with the capability to accept intact plants, in combination with straightforward NMR and data processing methods, can be used as an NMR plant sensor to continuously, quantitatively and non-invasively monitor changes in WC and DMC. This can be done in vivo, in situ, and with high temporal resolution. The method is validated by showing that measured liquid and solid proton densities accurately reflect WC and DMC of reference samples. The NMR plant sensor is demonstrated in an experimental context by monitoring WC of rice leaves under osmotic stress, and by measuring the dynamics of water and dry matter accumulation during seed filling in a developing wheat ear. It is further demonstrated how the method can be used to estimate leaf water potential on the basis of changes in leaf water content.

Author(s):  
Cao Phi Bang

The ex vitro acclimatization and greenhouse periods play a significant role for the in vitro originated plantlets. In these stages, the micropropagated plantlets have to rapidly adapt to environmental changes. Rhynchostylis gigantea is widely in vitro produced due to highly aesthetic and economic value. The aim of this work was to update the physiological changes of micropropagated R. gigantea plantlets during ex vitro acclimatization and greenhouse stages. The analysis results showed that leaf water content was significantly decreased at day 14 (90.36%) and day 28 (90.17%) stages but increased at day 84 (92.52%) and day 140 (92.34%) stages in compared to in vitro stages, day 0 (92.7%). Dry matter content was changing in the opposite direction to the leaf water content with the highest values at day 14 (9.63%) and day 28 (9.83%), respectively. The leaf transpiration rate was the highest at day zero (0.146 g/dm2/h) in compared to all other studied points. Oppositively, GPX activity was the lowest in plantlets at day zero (13.2 UI/g fresh leaf ) and the highest in planlets at day 14 (36,4 UI/g fresh leaf ). The leaf proline content was higher at day 7 and day 14 stages (132.3 and 150.8 m g/g fresh leaf, respectively) but lower at day 84 and day 140 stages (44.3 and 53.3 microgram/g fresh leaf, respectively) than at day zero (73.7 microgram/g fresh leaf ).


2013 ◽  
Vol 21 (1-2) ◽  
pp. 57-63 ◽  
Author(s):  
MHA Rashid

An experiment was conducted at the Horticulture Farm of the Bangladesh Agricultural University, Mymensingh to evaluate the effects of sulphur and GA3 on the growth and yield performance of onion cv. BARI Peaj-1. The experiment included four levels of sulphur viz., 0 (control), 15, 30 and 45 kg/ha and four concentrations of GA3 viz., 0 (control), 50, 75, 100 ppm. The experimental findings revealed that sulphur and GA3 had significant influence on plant height, number of leaves per plant, bulb diameter and length, individual bulb weight, splitted and rotten bulb, bulb dry matter content and bulb yield. The highest bulb yield (13.85 t/ha) was recorded from 30 kg S/ha, while the lowest bulb yield (11.20 t/ha) was obtained from control. Most of the parameters showed increasing trend with the higher concentration of GA3. Application of GA3 @ 100 ppm gave the maximum bulb yield (15.23 t/ha), while the minimum value (10.10 t/ha) was observed from control. Almost all the parameters were significantly influenced by combined treatments of sulphur and GA3 except bulb length of onion. The maximum bulb dry matter content (13.50%) and bulb yield (17.10 t/ha) were produced from the application of sulphur @ 30 kg/ha with 100ppm GA3, while the minimum bulb dry matter content (9.23%) and bulb yield (9.33 t/ha) were recorded from control treatment of sulphur with GA3.DOI: http://dx.doi.org/10.3329/pa.v21i1-2.16749 Progress. Agric. 21(1 & 2): 57 - 63, 2010


Author(s):  
Getu Beyene ◽  
Raj Deepika Chauhan ◽  
Jackson Gehan ◽  
Dimuth Siritunga ◽  
Nigel Taylor

Abstract Key message Among the five cassava isoforms (MeAPL1–MeAPL5), MeAPL3 is responsible for determining storage root starch content. Degree of storage root postharvest physiological deterioration (PPD) is directly correlated with starch content. Abstract AGPase is heterotetramer composed of two small and two large subunits each coded by small gene families in higher plants. Studies in cassava (Manihot esculenta) identified and characterized five isoforms of Manihot esculenta ADP-glucose pyrophosphorylase large subunit (MeAPL1–MeAPL5) and employed virus induced gene silencing (VIGS) to show that MeAPL3 is the key isoform responsible for starch and dry matter accumulation in cassava storage roots. Silencing of MeAPL3 in cassava through stable transgenic lines resulted in plants displaying significant reduction in storage root starch and dry matter content (DMC) and induced a distinct phenotype associated with increased petiole/stem angle, resulting in a droopy leaf phenotype. Plants with reduced starch and DMC also displayed significantly reduced or no postharvest physiological deterioration (PPD) compared to controls and lines with high DMC and starch content. This provides strong evidence for direct relationships between starch/dry matter content and its role in PPD and canopy architecture traits in cassava.


1969 ◽  
Vol 78 (3-4) ◽  
pp. 87-98
Author(s):  
Ricardo Goenaga

There is tittle information regarding optimum water requirement for tanier grown under semiarid conditions with irrigation. A study was conducted to determine the growth, nutrient uptake and yield performance of tanier plants irrigated with the equivalent of fractions of evapotranspiration. The irrigation regimes were based on class A pan factors ranging from 0.33 to 1.32 with increments of 0.33. Tanier plants grown under field conditions were harvested for biomass production about every 6 weeks during the growing season. At each harvest, plants were separated into various plant parts to determine dry matter accumulation, N, P, K, Ca, Mg, and Zn uptake and yield. During the first 278 days after planting, plants replenished with 99 and 132% of the water lost through evapotranspiration (WLET) exhibited similar total dry matter content; however, their dry matter content was significantly greater than that in plants supplied with 33 and 66% WLET. The amount of N, P, K, Ca, Mg, and Zn taken up by plants replenished with 99 and 132 WLET was similar, whereas the content of these nutrients in plants replenished with 33 and 66% WLET was considerably lower. The yield of plants replenished with 99% WLET was considerably greater than that of plants supplied with 33 and 66% WLET, but significantly lower than that from plants receiving 132% WLET. Maximum cormel yields of 19,479 kg/ha were obtained from plants replenished with 132% WLET.


1988 ◽  
Vol 36 (6) ◽  
pp. 711 ◽  
Author(s):  
KA Meney ◽  
KW Dixon

Four species of Restionaceae and Cyperaceae from the Mediterranean-type climate region of Western Australia were studied to determine factor(s) limiting their reproductive performance. Ecdeiocolea monostachya (Ecdeiocoleaceae), Lepidobolus chaetocephalus (Restionaceae), Restio aff. sphacelatus (Restionaceae) and Mesomelaena pseudostygia (Cyperaceae) differed in the pattern of dry matter partitioning and phenological patterns. All species were moderately efficient at remobilising dry matter from senescing vegetative organs, maintaining constant tissue water to dry matter content in mature organs over the study period regardless of soil moisture availability. In situ nutrient and water supplements of study species did not elicit improved seed production or significant increases in dry matter accumulation (except for current and old culms of E. monostachya and spikelets of L. chaetocephalus). For all study species except L. chaetocephalus, seed production was low, while herbivore activity, insect predation andlor infection by a smut (Tolyposporium lepidiboli) reduced seed production potential in L. chaetocephalus and E. monostachya. Attempts at seed germination for all study species were not successful. Extracted embryos from mature seed of all species cultured in vitro grew rapidly, providing a reliable method for propagation of study species.


2005 ◽  
pp. 55-64
Author(s):  
Lejla Budai ◽  
József Racskó ◽  
Zoltán Szabó ◽  
Miklós Soltész ◽  
Ervin Farkas ◽  
...  

In the present study the authors investigated the effect of sunburn injury on fruit quality parameters (cover colour, depth of tissue damage, fruit flesh firmness, dry matter content) of apple.The symptoms of sunburn injury appeared as concentric rings, differing in colour from each other and the cover colour. This can be connected with the ratio of the injury. The authors observed the following colours on the fruit surface (from the epicentre of spots on the surface of the fruit) dark brown (strongly damaged), light brown (moderately damaged), pale red transition (weakly damaged), red surface cover colour (not damaged).Sunburn of apple fruits is a surface injury caused by solar radiation, heat and low relative humidity. In the initial phase, a light corky layer, golden or bronze discolouration and injuries of the epidermal tissue appear on the surface exposed to radiation. Thus, it detracts from the fruit’s appearance, but in most of the cases it would not cause serious damages in the epidermal tissue. The depth of tissue damage is not considerable, its values are between 1.5-2.0 mm in general. It is commonly known, that tissue structure of the apple fruit is not homogeneous. Accordingly, the degree of injury shows some differences under the different parts of the fruit surface.On the basis of the flesh firmness studies, it can be stated that the flesh firmness of the damaged parts increases due to the sunburn effect. This is due to the fact that the damaged plant cells die, the water content of the tissue decreases and it hardens. However, due to this reduction in the water content the dry matter content will increase.


2021 ◽  
pp. 1-14
Author(s):  
Sajeed Hasan Bappy ◽  
Khaleda Khatun ◽  
Tahmina Mostarin ◽  
Mutasim Fuad Shuvo ◽  
Mst. Umme Habiba ◽  
...  

A field experiment was conducted at the research farm of Sher-e-Bangla Agricultural University, Dhaka. During the period from October, 2018 to March, 2019 to find out the growth and yield of onion as influenced by Sulphur and Boron with mulch materials. The experiment consisted of two factors: Factor A: Four doses of Sulphurand Boron fertilizer viz. F0 = S0kgB0kg/ha (Control), F1 = S20kgB1kg/ha, F2 = S40kgB2kg/ha, F3 = S60kgB3kg/ha and Factor B: Four types of mulch viz. M0 = No mulch and no irrigation, M1 = Black polythene, M2 = Water hyacinth and M3 = Rice straw. There were 16 treatment combinations and experiment was setup in a Randomized Complete Block Design (RCBD) with three replications. In case of Sulphur and Boron treatments at 60 days after transplanting (DAT), the highest plant height 53.38 cm, maximum leaf number 10.48, highest bulb length 4.83 cm,, maximum neck diameter (1.31 cm), highest dry matter content (15.98%), dry matter content of leaf (24.74%), single bulb weight (39.93 g), yield per plot (0.80 kg) and yield per hectare (9.98 t) were obtained from F3 treatment. Among the mulch materials,  highest plant height at 60 DAT (52.51 cm), maximum leaf number (10.19), highest bulb length (4.52 cm), highest bulb diameter (5.74 cm), maximum neck diameter (1.26 cm), dry matter content of leaf (23.35%), single bulb weight (39.05 g), yield per plot (0.78 kg) and yield per hectare (9.76 t) were obtained from M1 treatment. In combined effect, the highest plant height at 60 DAT (55.54 cm), maximum leaf number (11.47), longest bulb length (5.51 cm), highest bulb diameter (6.68 cm), maximum diameter of neck (1.42 cm), dry matter content of leaf (27.48%), single bulb weight (42.40 g), yield per plot (0.85 kg) and yield per hectare (11.21 t) were obtained from F3M1 treatment (S60kg/ha + B3kg/ha with black polythene mulch). The highest gross return (Tk. 3, 36, 300/ha), net return (Tk. 1, 88, 934/ha) and benefit cost ration (2.28) was obtained from the treatment combination (F3M1). Accordingly, for high growth, high yield, and economic point of view, F3M1 treatment is recommended in onion cultivation.


2008 ◽  
Vol 19 (2) ◽  
pp. 173 ◽  
Author(s):  
L. MUSTONEN ◽  
E. WALLIUS ◽  
T. HURME

The effects various rates of nitrogen application on accumulation of dry matter and nitrogen in potato (Solanum tuberosum L.) were studied during a short growing period of 140–180 days, at MTT Agrifood Research Finland in 2000–2001. The treatments were 0, 60 and 120 kg N ha-1 and the potato cultivars tested were Van Gogh and Nicola. Four successive harvests were made during the course of the experiment to monitor changes in the accumulation of dry matter and nitrogen over the season. Applications of nitrogen substantially increased haulm dry matter accumulation and to an even greater extent their nitrogen contents. The highest dry matter values were generally registered at 120 kg N ha-1. Dry matter and nitrogen content of haulms started to decline during the later part of season and most nitrogen was relocated to tubers. The results suggest that an application of only 60 kg N ha-1 was sufficient to promote rapid canopy development and there were only small reductions in dry matter and nitrogen accumulation until late in the season when the canopy started to senesce as nitrogen supply diminished. Tuber yield, plant dry matter and nitrogen accumulation at maturity were related to crop nitrogen supply. Although application of the high rate, 120 N kg ha-1, resulted in a significant increase in dry matter accumulation, this was not reflected in the profit because the higher nitrogen application reduced dry matter content of tubers by 2.6% in 2000 and by 1.1% in 2001 relative to the use of 60 kg N ha-1. Apparent fertilizer nitrogen recovery values on a whole plant basis ranged from 53 to 75%. The proportion of fertilizer recovered in tubers clearly declined with increase in nitrogen supply.;


2021 ◽  
Vol 8 (2) ◽  
pp. 30-35
Author(s):  
Akpan A U ◽  
Orji K O ◽  
Uhala S C

A research on growth and yield components of some turmeric varieties (Curcuma longa L.) as affected by inorganic fertilizer levels in Umudike, South Eastern Nigeria was carried out at the teaching and research farm of the University, during 2018/2019 cropping seasons. It was laid out in a split plot design with three replications. Results, showed that plant height and number of tillers for both varieties and fertilizers levels increased at 2, 4, and 6 months after planting (MAP) during 2018 and 2019 cropping seasons. Variety 021 and 400 NPK (15:15:15) Kg-1 produced tallest plants and highest number of tillers over other varieties and fertilizer levels. Crop growth rate was positive at 2 – 4 MAP and negative at 4 – 6 MAP, with 021 and 400 NPK (15:15:15) kgha-1 producing higher growth rate. Heaviest rhizomes fresh weight (kg plot-1) of 3.74 and 3.75, rhizome dry matter content of 14.49 and 16.8%, rhizome dry weight of 23.57 and 23.90g and harvest index of 2.60 and 2.70% was yielded by UMT 021 variety over other varieties. The level of 400 NPK (15:15:15) kg ha-1 produced heaviest rhizome fresh weight of 4.47 and 4.57 kg plot-1; rhizome dry matter content of 19.42 and 25.8%; rhizome dry weight of 27.54 and 27.8g and harvest index of 2.81 and 3.20%, over other levels. Consequently, variety 021 and 400 NPK (15:15:15) kgha-1 are recommended for sole production of turmeric in Umudike, South Eastern Nigeria.


Sign in / Sign up

Export Citation Format

Share Document