scholarly journals Potential Effects of Microplastic on Arbuscular Mycorrhizal Fungi

2021 ◽  
Vol 12 ◽  
Author(s):  
Eva F. Leifheit ◽  
Anika Lehmann ◽  
Matthias C. Rillig

Microplastics (MPs) are ubiquitously found in terrestrial ecosystems and are increasingly recognized as a factor of global change (GCF). Current research shows that MP can alter plant growth, soil inherent properties, and the composition and activity of microbial communities. However, knowledge about how microplastic affects arbuscular mycorrhizal fungi (AMF) is scarce. For plants it has been shown that microplastic can both increase and decrease the aboveground biomass and reduce the root diameter, which could indirectly cause a change in AMF abundance and activity. One of the main direct effects of microplastic is the reduction of the soil bulk density, which translates to an altered soil pore structure and water transport. Moreover, especially fibers can have considerable impacts on soil structure, namely the size distribution and stability of soil aggregates. Therefore, microplastic alters a number of soil parameters that determine habitat space and conditions for AMF. We expect that this will influence functions mediated by AMF, such as soil aggregation, water and nutrient transport. We discuss how the impacts of microplastic on AMF could alter how plants deal with other GCFs in the context of sustainable food production. The co-occurrence of several GCFs, e.g., elevated temperature, drought, pesticides, and microplastic could modify the impact of microplastic on AMF. Furthermore, the ubiquitous presence of microplastic also relates to earth system processes, e.g., net primary production (NPP), carbon and nitrogen cycling, which involve AMF as key soil organisms. For future research, we outline which experiments should be prioritized.

Land Science ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. p60
Author(s):  
Hongna Mu ◽  
Lei Fan ◽  
Shaohua Zhu ◽  
Taoze Sun

Arbuscular mycorrhizal fungi(AMF) can promote the absorption of soil water and mineral nutrients, improve photosynthesis, and make host attain higher quality finally by establishing symbiotic relationship between AMF and host root. To improve Tulip gesneriana quality have practical meaning under no bad affect to cultivation soil, in the light of its economical and ecological values. However, some AMF may be diverse from others, the concrete function of AMF on commercial tulip varieties need to explore. Therefore, three different sets of  arbuscular mycorrhizal fungi were inoculated into tulip rhizosphere soil, which were set as 4(Diversispora versiformis), 7(Diversispora spurca) and 1 + 3 + 4 (Rhizophagus intraradias + Funneliformis mosseae + Diversispora versiformis), respectively. The results showed that the activity of most of the measured indices increased, the average root diameter and sucrose content decreased in those three mycorrhizal treatments. Our research provide some theoretical basis for the application of AMF on T.gesneriana ecological cultivation in future.


2019 ◽  
Vol 113 (2) ◽  
pp. 321
Author(s):  
Mazen IBRAHIM

The impact of indigenous arbuscular mycorrhizal fungi (AMF) on agronomic characteristics of sunflower (<em>Helianthus annuus</em> L.) was evaluated in a pot experiment. The indigenous AMF, including <em>Glomus intraradices, Glomus mosseae</em>, and <em>Glomus viscosum</em>, were isolated from an agricultural field in which cotton and sunflower plants were grown. The most abundant species (<em>G. viscosum</em>) was multiplied in a monospecific culture. Sunflower plants were inoculated with the mixture of three selected AMF species or solely with <em>G. viscosum</em>. The number of leaves, shoot length, head diameter, above ground biomass, and seeds mass were significantly higher in the plant inoculated with AMF mixture followed by individual inoculation with <em>G. viscosum</em> followed by the control. AMF mixture outperformed the <em>G. viscosumby</em> increasing mycorrhizal dependency and mycorrhizal inoculation effect of sunflower. The results indicate that AMF mixture could be considered as a good inoculum for improving growth and yield of sunflower in sustainable agriculture.


Author(s):  
Tom Thirkell ◽  
◽  
Grace Hoysted ◽  
Ashleigh Elliott ◽  
Katie Field ◽  
...  

Arbuscular mycorrhizal fungi (AMF) form endosymbiosis with over 70 % of land plants, including most crops including cereals. These symbioses facilitate resource exchange between partners and can significantly increase plant nutrient uptake and growth, among other benefits. AMF ubiquity in agricultural soils, in addition to the many roles they are known to play in soil health, demands we consider them when discussing crop function. We discuss how AMF are capable of increasing crop acquisition of macro- and micronutrients. We examine further impacts that AMF have on root system architecture, and how this relates to nutrient acquisition. We highlight reasons why potential benefits of the symbiosis are often not realised and how this influences current perspectives on the utility of AMF. We also discuss aspects of modern agronomy practice which are deleterious to mycorrhizal functioning. Strategies are suggested by which mycorrhizas might be exploited in future highlighting future research priorities.


2019 ◽  
Vol 43 ◽  
Author(s):  
Marisângela Viana Barbosa ◽  
Daniela de Fátima Pedroso ◽  
Nilton Curi ◽  
Marco Aurélio Carbone Carneiro

ABSTRACT Soil structure, which is defined by the arrangement of the particles and the porous space forming aggregates, is one of the most important properties of the soil. Among the biological factors that influence the formation and stabilization of soil aggregates, arbuscular mycorrhizal fungi (AMF) are distinguished due to extrarradicular hyphae and glomalin production. In this context, the objective of this study was to evaluate different AMF (Acaulospora colombiana, Acaulospora longula, Acaulospora morrowiae, Paraglomus occultum and Gigaspora margarita) associated with Urochloa brizantha (A. Rich.) Stapf on soil aggregate stability. The study was conducted in a completely randomized design, using an Oxisol and autoclaved sand 2:1 (v/v), with seven treatments: five AMF; and treatments with plants without inoculation and with only the soil, with 5 replicates. The experiment was conducted during 180 days and the following variables were evaluated: mycelium total length (TML); production of easily extractable glomalin-related soil protein (GRSP) in the soil and aggregate classes; stability of the dry and immersed in water aggregates through the mean geometric diameter (MGD) and the mean weighted diameter (MWD) of aggregates; and the soil aggregate stability index (ASI). It was observed that the inoculation favored soil aggregation, with a high incidence of A. colombiana, which presented the highest MGD, TML and GRSP production in the aggregates with Ø>2.0mm and for A. colombiana and A. morrowiae in the aggregates with Ø<0.105 mm, when compared to the treatment without inoculation. These results show that there is a distinction between the effects of different AMF on the formation and stability of soil aggregates.


2012 ◽  
Vol 77 (1) ◽  
pp. 17-27 ◽  
Author(s):  
Anna Lisek ◽  
Lidia Sas Paszt ◽  
Beata Sumorok

Summary In organic farming, mineral fertilizers are replaced by various preparations to stimulate plant growth and development. Introduction of new biopreparations into horticultural production requires an assessment of their effects on the growth and yielding of plants. Among the important indicators of the impact on plants of beneficial microorganisms contained in bioproducts is determination of their effectiveness in stimulating the growth and yielding of plants. Moreover, confirmation of the presence of arbuscular mycorrhizal (AM) fungi in the roots and plant growth promoting rhizobacteria (PGPR) in the rhizosphere is also necessary. In addition to conventional methods, molecular biology techniques are increasingly used to allow detection and identification of AM fungi in plant roots. The aim of this study was identification and initial taxonomic classification of AM fungi in the roots of ‘Elkat’ strawberry plants fertilized with various biopreparations using the technique of nested PCR. Tests were performed on DNA obtained from the roots of ‘Elkat’ strawberry plants: not fertilized, treated with 10 different biopreparations, or fertilized with NPK. Amplification of the large subunit of ribosomal gene (LSU rDNA) was carried out using universal primers, and then, in the nested PCR reaction, primers specific for the fungi of the genera Glomus, Acaulospora, and Scutellospora were used. Colonization of strawberry roots by arbuscular mycorrhizal fungi was determined on the basis of the presence of DNA fragments of a size corresponding to the types of the fungi tested for. As a result of the analyses, the most reaction products characterizing AM fungi were found in the roots of plants treated with the preparation Florovit Eko. The least fragments characteristic of AM fungi were detected in the roots of plants fertilized with NPK, which confirms the negative impact of mineral fertilizers on the occurrence of mycorrhizal fungi in the roots of strawberry plants. The roots of plants fertilized with Tytanit differed from the control plants by the presence of one of the clusters of fungi of the genus Glomus and by the absence of a cluster of fungi of the genus Scutellospora. In the roots of plants treated with other biopreparations there were reaction products indicating the presence of fungi of the genera Glomus, Scutellospora and Acaulospora, like in the roots of the control plants. The results will be used to assess the suitability of microbiologically enriched biopreparations in horticultural production.


2017 ◽  
Vol 42 (6) ◽  
pp. 793-802 ◽  
Author(s):  
PIL U. RASMUSSEN ◽  
TARIQUE AMIN ◽  
ALISON E. BENNETT ◽  
KRISTINA KARLSSON GREEN ◽  
SARI TIMONEN ◽  
...  

2012 ◽  
Vol 21 (1) ◽  
pp. 1
Author(s):  
Mauritz Vestberg

Starting in 1988, several European COST Actions (810, 821 and 838) have focused on understanding the role of arbuscular mycorrhizal fungi (AMF) in sustainable agriculture and natural ecosystems. The latest COST Action on AMF, Action 870 “From Production to Application of Arbuscular Mycorrhizal Fungi in Agricultural Systems: a Multidisciplinary Research”, ran from February 2007 to February 2011 and a total of 26 European countries participated. A meeting of WG2 and WG3 was organized in 13-15 December 2010 by MTT Agrifood Research Finland and the University of Jyväskylä, Finland. The meeting was held at the University of Jyväskylä. The general themes of the meeting were “Utilization of AMF in extreme stress conditions” (WG3) and “Quality control of AM fungal inoculum” (WG2). The role of AMF in arid, saline or heavy metal contaminated sites was discussed in several papers. Also the impact of temperature on AM function and possibilites of utilizing AMF in low- and high-input agricultural systems were discussed. Papers on the role of AMF in controlling biotic stress, i.e. plant diseases, of crops were also presented. This special issue of Agricultural and Food Science contains a selection of papers presented at the COST Action 870 meeting in Jyväskylä, December 2010.  


2015 ◽  
Vol 50 (4) ◽  
pp. 313-321 ◽  
Author(s):  
Marco Aurélio Carbone Carneiro ◽  
Dorotéia Alves Ferreira ◽  
Edicarlos Damacena de Souza ◽  
Helder Barbosa Paulino ◽  
Orivaldo José Saggin Junior ◽  
...  

The objective of this work was to evaluate the spore density and diversity of arbuscular mycorrhizal fungi (AMF) in soil aggregates from fields of "murundus" (large mounds of soil) in areas converted and not converted to agriculture. The experiment was conducted in a completely randomized design with five replicates, in a 5x3 factorial arrangement: five areas and three aggregate classes (macro-, meso-, and microaggregates). The evaluated variables were: spore density and diversity of AMF, total glomalin, total organic carbon (TOC), total extraradical mycelium (TEM), and geometric mean diameter (GMD) of soil aggregates. A total of 21 AMF species was identified. Spore density varied from 29 to 606 spores per 50 mL of soil and was higher in microaggregates and in the area with 6 years of conversion to agriculture. Total glomalin was higher between murundus in all studied aggregate classes. The area with 6 years showed lower concentration of TOC in macroaggregates (8.6 g kg-1) and in microaggregates (10.1 g kg-1). TEM was greater at the top of the murundus in all aggregate classes. GMD increased with the conversion time to agriculture. The density and diversity of arbuscular mycorrhizal spores change with the conversion of fields of murundus into agriculture.


Sign in / Sign up

Export Citation Format

Share Document