scholarly journals Hydrogen Sulfide Alleviates Alkaline Salt Stress by Regulating the Expression of MicroRNAs in Malus hupehensis Rehd. Roots

2021 ◽  
Vol 12 ◽  
Author(s):  
Huan Li ◽  
Ting-Ting Yu ◽  
Yuan-Sheng Ning ◽  
Hao Li ◽  
Wei-Wei Zhang ◽  
...  

Malus hupehensis Rehd. var. pingyiensis Jiang (Pingyi Tiancha, PYTC) is an excellent apple rootstock and ornamental tree, but its tolerance to salt stress is weak. Our previous study showed that hydrogen sulfide (H2S) could alleviate damage in M. hupehensis roots under alkaline salt stress. However, the molecular mechanism of H2S mitigation alkaline salt remains to be elucidated. MicroRNAs (miRNAs) play important regulatory roles in plant response to salt stress. Whether miRNAs are involved in the mitigation of alkaline salt stress mediated by H2S remains unclear. In the present study, through the expression analysis of miRNAs and target gene response to H2S and alkaline salt stress in M. hupehensis roots, 115 known miRNAs (belonging to 37 miRNA families) and 15 predicted novel miRNAs were identified. In addition, we identified and analyzed 175 miRNA target genes. We certified the expression levels of 15 miRNAs and nine corresponding target genes by real-time quantitative PCR (qRT-PCR). Interestingly, H2S pretreatment could specifically induce the downregulation of mhp-miR408a expression, and upregulated mhp-miR477a and mhp-miR827. Moreover, root architecture was improved by regulating the expression of mhp-miR159c and mhp-miR169 and their target genes. These results suggest that the miRNA-mediated regulatory network participates in the process of H2S-mitigated alkaline salt stress in M. hupehensis roots. This study provides a further understanding of miRNA regulation in the H2S mitigation of alkaline salt stress in M. hupehensis roots.

2021 ◽  
Vol 281 ◽  
pp. 109898
Author(s):  
Jie Yang ◽  
Jingjing Yang ◽  
Lingling Zhao ◽  
Liang Gu ◽  
Fanlin Wu ◽  
...  

2010 ◽  
Vol 299 (3) ◽  
pp. G769-G777 ◽  
Author(s):  
S. Glaser ◽  
M. Wang ◽  
Y. Ueno ◽  
J. Venter ◽  
K. Wang ◽  
...  

Biliary epithelial cells (BEC) are morphologically and functionally heterogeneous. To investigate the molecular mechanism for their diversities, we test the hypothesis that large and small BEC have disparity in their target gene response to their transcriptional regulator, the biliary cell-enriched hepatocyte nuclear factor HNF6. The expression of the major HNF ( HNF6, OC2, HNF1b, HNF1a, HNF4a, C/EBPb, and Foxa2) and representative biliary transport target genes that are HNF dependent were compared between SV40-transformed BEC derived from large (SV40LG) and small (SV40SM) ducts, before and after treatment with recombinant adenoviral vectors expressing HNF6 (AdHNF6) or control LacZ cDNA (AdLacZ). Large and small BEC were isolated from mouse liver treated with growth hormone, a known transcriptional activator of HNF6, and the effects on selected target genes were examined. Constitutive Foxa2, HNF1a, and HNF4a gene expression were 2.3-, 12.4-, and 2.6-fold, respectively, higher in SV40SM cells. This was associated with 2.7- and 4-fold higher baseline expression of HNF1a- and HNF4a-regulated ntcp and oatp1 genes, respectively. Following AdHNF6 infection, HNF6 gene expression was 1.4-fold higher ( P = 0.02) in AdHNF6 SV40SM relative to AdHNF6 SV40LG cells, with a corresponding higher Foxa2 (4-fold), HNF1a (15-fold), and HNF4a (6-fold) gene expression in AdHNF6-SV40SM over AdHNF6-SV40LG. The net effects were upregulation of HNF6 target gene glucokinase and of Foxa2, HNF1a, and HNF4a target genes oatp1, ntcp, and mrp2 over AdLacZ control in both cells, but with higher levels in AdH6-SV40SM over AdH6-SV40LG of glucokinase, oatp1, ntcp, and mrp2 (by 1.8-, 3.4-, 2.4-, and 2.5-fold, respectively). In vivo, growth hormone-mediated increase in HNF6 expression was associated with similar higher upregulation of glucokinase and mrp2 in cholangiocytes from small vs. large BEC. Small and large BEC have a distinct profile of hepatocyte transcription factor and cognate target gene expression, as well as differential strength of response to transcriptional regulation, thus providing a potential molecular basis for their divergent function.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 21 ◽  
Author(s):  
Y-h Taguchi

Background miRNA regulation of target genes and promoter methylation are known to be the primary mechanisms underlying the epigenetic regulation of gene expression. However, how these two processes cooperatively regulate gene expression has not been extensively studied. Methods Gene expression and promoter methylation profiles of 271 distinct human cell lines were obtained from gene expression omnibus. P-values that describe both miRNA-targeted-gene promoter methylaion and miRNA regulation of target genes were computed using the MiRaGE method proposed recently by the author.Results Significant changes in promoter methylation were associated with miRNA targeting. It was also found that miRNA-targeted-gene promoter hypomethylation was related to differential target gene expression; the genes with miRNA-targeted-gene promoter hypomethylation were downregulated during cell senescence and upregulated during cellular differentiation. Promoter hypomethylation was especially enhanced for genes targeted by miR-548 miRNAs, which are non-conserved, primate-specific miRNAs that are typically expressed at lower levels than the frequently investigated conserved miRNAs.Conclusions It was found that promoter methylation was affected by miRNA targeting. Furthermore, miRNA-targeted-gene promoter hypomethylation is suggested to facilitate gene regulation by miRNAs that are not strongly expressed (e.g., miR-548 miRNAs).


Botany ◽  
2013 ◽  
Vol 91 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Julian C. Verdonk ◽  
Michael L. Sullivan

Gene silencing is a powerful technique that allows the study of the function of specific genes by selectively reducing their transcription. Several different approaches can be used, however they all have in common the artificial generation of single stranded small ribonucleic acids (RNAs) that are utilized by the endogenous gene silencing machinery of the organism. Artificial microRNAs (amiRNA) can be used to very specifically target genes for silencing because only a short sequence of 21 nucleotides of the gene of interest is used. Gene silencing via amiRNA has been developed for Arabidopsis thaliana (L.) Heynh. and rice using endogenous microRNA (miRNA) precursors and has been shown to also work effectively in other dicot species using the arabidopsis miRNA precursor. Here, we demonstrate that the arabidopsis miR319 precursor can be used to silence genes in the important forage crop species alfalfa (Medicago sativa L.) by silencing the expression of a transgenic beta-glucuronidase (GUSPlus) target gene.


1999 ◽  
Vol 19 (1) ◽  
pp. 495-504 ◽  
Author(s):  
John Sok ◽  
Xiao-Zhong Wang ◽  
Nikoleta Batchvarova ◽  
Masahiko Kuroda ◽  
Heather Harding ◽  
...  

ABSTRACT CHOP (also called GADD153) is a stress-inducible nuclear protein that dimerizes with members of the C/EBP family of transcription factors and was initially identified as an inhibitor of C/EBP binding to classic C/EBP target genes. Subsequent experiments suggested a role for CHOP-C/EBP heterodimers in positively regulating gene expression; however, direct evidence that this is the case has so far not been uncovered. Here we describe the identification of a positively regulated direct CHOP-C/EBP target gene, that encoding murine carbonic anhydrase VI (CA-VI). The stress-inducible form of the gene is expressed from an internal promoter and encodes a novel intracellular form of what is normally a secreted protein. Stress-induced expression of CA-VI is both CHOP and C/EBPβ dependent in that it does not occur in cells deficient in either gene. A CHOP-responsive element was mapped to the inducibleCA-VI promoter, and in vitro footprinting revealed binding of CHOP-C/EBP heterodimers to that site. Rescue of CA-VIexpression in c/ebpβ−/− cells by exogenous C/EBPβ and a shorter, normally inhibitory isoform of the protein known as LIP suggests that the role of the C/EBP partner is limited to targeting the CHOP-containing heterodimer to the response element and points to a preeminent role for CHOP in CA-VI induction during stress.


Genetics ◽  
1999 ◽  
Vol 152 (1) ◽  
pp. 319-344
Author(s):  
Thomas R Breen

Abstract trithorax (trx) encodes chromosome-binding proteins required throughout embryogenesis and imaginal development for tissue- and cell-specific levels of transcription of many genes including homeotic genes of the ANT-C and BX-C. trx encodes two protein isoforms that contain conserved motifs including a C-terminal SET domain, central PHD fingers, an N-terminal DNA-binding homology, and two short motifs also found in the TRX human homologue, ALL1. As a first step to characterizing specific developmental functions of TRX, I examined phenotypes of 420 combinations of 21 trx alleles. Among these are 8 hypomorphic alleles that are sufficient for embryogenesis but provide different levels of trx function at homeotic genes in imaginal cells. One allele alters the N terminus of TRX, which severely impairs larval and imaginal growth. Hypomorphic alleles that alter different regions of TRX equivalently reduce function at affected genes, suggesting TRX interacts with common factors at different target genes. All hypomorphic alleles examined complement one another, suggesting cooperative TRX function at target genes. Comparative effects of hypomorphic genotypes support previous findings that TRX has tissue-specific interactions with other factors at each target gene. Some hypomorphic genotypes also produce phenotypes that suggest TRX may be a component of signal transduction pathways that provide tissue- and cell-specific levels of target gene transcription.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 758
Author(s):  
Sanjay Joshi ◽  
Christian Keller ◽  
Sharyn E. Perry

AGAMOUS-like 15 (AGL15) is a member of the MADS domain family of transcription factors (TFs) that can directly induce and repress target gene expression, and for which promotion of somatic embryogenesis (SE) is positively correlated with accumulation. An ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif of form LxLxL within the carboxyl-terminal domain of AGL15 was shown to be involved in repression of gene expression. Here, we examine whether AGL15′s ability to repress gene expression is needed to promote SE. While a form of AGL15 where the LxLxL is changed to AxAxA can still promote SE, another form with a strong transcriptional activator at the carboxy-terminal end, does not promote SE and, in fact, is detrimental to SE development. Select target genes were examined for response to the different forms of AGL15.


Author(s):  
Philipp Moritz Fricke ◽  
Angelika Klemm ◽  
Michael Bott ◽  
Tino Polen

Abstract Acetic acid bacteria (AAB) are valuable biocatalysts for which there is growing interest in understanding their basics including physiology and biochemistry. This is accompanied by growing demands for metabolic engineering of AAB to take advantage of their properties and to improve their biomanufacturing efficiencies. Controlled expression of target genes is key to fundamental and applied microbiological research. In order to get an overview of expression systems and their applications in AAB, we carried out a comprehensive literature search using the Web of Science Core Collection database. The Acetobacteraceae family currently comprises 49 genera. We found overall 6097 publications related to one or more AAB genera since 1973, when the first successful recombinant DNA experiments in Escherichia coli have been published. The use of plasmids in AAB began in 1985 and till today was reported for only nine out of the 49 AAB genera currently described. We found at least five major expression plasmid lineages and a multitude of further expression plasmids, almost all enabling only constitutive target gene expression. Only recently, two regulatable expression systems became available for AAB, an N-acyl homoserine lactone (AHL)-inducible system for Komagataeibacter rhaeticus and an l-arabinose-inducible system for Gluconobacter oxydans. Thus, after 35 years of constitutive target gene expression in AAB, we now have the first regulatable expression systems for AAB in hand and further regulatable expression systems for AAB can be expected. Key points • Literature search revealed developments and usage of expression systems in AAB. • Only recently 2 regulatable plasmid systems became available for only 2 AAB genera. • Further regulatable expression systems for AAB are in sight.


Sign in / Sign up

Export Citation Format

Share Document