scholarly journals Impacts of Nitrogen Deficiency on Wheat (Triticum aestivum L.) Grain During the Medium Filling Stage: Transcriptomic and Metabolomic Comparisons

2021 ◽  
Vol 12 ◽  
Author(s):  
Yanjie Wang ◽  
Demei Wang ◽  
Zhiqiang Tao ◽  
Yushuang Yang ◽  
Zhenxian Gao ◽  
...  

Nitrogen (N) supplementation is essential to the yield and quality of bread wheat (Triticum aestivum L.). The impact of N-deficiency on wheat at the seedling stage has been previously reported, but the impact of distinct N regimes applied at the seedling stage with continuous application on filling and maturing wheat grains is lesser known, despite the filling stage being critical for final grain yield and flour quality. Here, we compared phenotype characteristics such as grain yield, grain protein and sugar quality, plant growth, leaf photosynthesis of wheat under N-deficient and N-sufficient conditions imposed prior to sowing (120 kg/hm2) and in the jointing stage (120 kg/hm2), and then evaluated the effects of this continued stress through RNA-seq and GC-MS metabolomics profiling of grain at the mid-filling stage. The results showed that except for an increase in grain size and weight, and in the content of total sugar, starch, and fiber in bran fraction and white flour, the other metrics were all decreased under N-deficiency conditions. A total of 761 differentially expressed genes (DEGs) and 77 differentially accumulated metabolites (DAMs) were identified. Under N-deficiency, 51 down-regulated DEGs were involved in the process of impeding chlorophyll synthesis, chloroplast development, light harvesting, and electron transfer functions of photosystem, which resulted in the SPAD and Pn value decreased by 32 and 15.2% compared with N-sufficiency, inhibited photosynthesis. Twenty-four DEGs implicated the inhibition of amino acids synthesis and protein transport, in agreement with a 17–42% reduction in ornithine, cysteine, aspartate, and tyrosine from metabolome, and an 18.6% reduction in grain protein content. However, 14 DEGs were implicated in promoting sugar accumulation in the cell wall and another six DEGs also enhanced cell wall synthesis, which significantly increased fiber content in the endosperm and likely contributed to increasing the thousands-grain weight (TGW). Moreover, RNA-seq profiling suggested that wheat grain can improve the capacity of DNA repair, iron uptake, disease and abiotic stress resistance, and oxidative stress scavenging through increasing the content levels of anthocyanin, flavonoid, GABA, galactose, and glucose under N-deficiency condition. This study identified candidate genes and metabolites related to low N adaption and tolerance that may provide new insights into a comprehensive understanding of the genotype-specific differences in performance under N-deficiency conditions.

2020 ◽  
Author(s):  
Colin Peter Singer Kruse ◽  
Alexander D Meyers ◽  
Proma Basu ◽  
Sarahann Hutchinson ◽  
Darron R Luesse ◽  
...  

Abstract Background: Understanding of gravity sensing and response is critical to long-term human habitation in space and can provide new advantages for terrestrial agriculture. To this end, the altered gene expression profile induced by microgravity has been repeatedly queried by microarray and RNA-seq experiments to understand gravitropism. However, the quantification of altered protein abundance in space has been minimally investigated. Results: Proteomic (iTRAQ-labelled LC-MS/MS) and transcriptomic (RNA-seq) analyses simultaneously quantified protein and transcript differential expression of three-day old, etiolated Arabidopsis thaliana seedlings grown aboard the International Space Station along with their ground control counterparts. Protein extracts were fractionated to isolate soluble and membrane proteins and analyzed to detect differentially phosphorylated peptides. In total, 968 RNAs, 107 soluble proteins, and 103 membrane proteins were identified as differentially expressed. In addition, the proteomic analyses identified 16 differential phosphorylation events. Proteomic data delivered novel insights and simultaneously provided new context to previously made observations of gene expression in microgravity. There is a sweeping shift in post-transcriptional mechanisms of gene regulation including RNA-decapping protein DCP5, the splicing factors GRP7 and GRP8, and AGO4,. These data also indicate AHA2 and FERONIA as well as CESA1 and SHOU4 as central to the cell wall adaptations seen in spaceflight. Patterns of tubulin-a 1, 3,4 and 6 phosphorylation further reveal an interaction of microtubule and redox homeostasis that mirrors osmotic response signaling elements. The absence of gravity also results in a seemingly wasteful dysregulation of plastid gene transcription. Conclusions: The datasets gathered from Arabidopsis seedlings exposed to microgravity revealed marked impacts on post-transcriptional regulation, cell wall synthesis, redox/microtubule dynamics, and plastid gene transcription. The impact of post-transcriptional regulatory alterations represents an unstudied element of the plant microgravity response with the potential to significantly impact plant growth efficiency and beyond. What’s more, addressing the effects of microgravity on AHA2, CESA1, and alpha tubulins has the potential to enhance cytoskeletal organization and cell wall composition, thereby enhancing biomass production and growth in microgravity. Finally, understanding and manipulating the dysregulation of plastid gene transcription has further potential to address the goal of enhancing plant growth in the stressful conditions of microgravity.


2007 ◽  
Vol 87 (4) ◽  
pp. 709-718 ◽  
Author(s):  
B. J. Zebarth ◽  
E. J. Botha ◽  
H. Rees

Use of an in-season measurement of crop nitrogen (N) status to optimize fertilizer N management has been proposed as a means of optimizing yield of spring wheat while minimizing environmental N losses. This study determined the effect of the rate and time of fertilizer N application on the grain yield, grain protein, and apparent recovery of fertilizer N in grain and in the above-ground plant for spring wheat (Triticum aestivum L.) in 2001–2003, and evaluated the use of a SPAD-502 meter to measure crop N status in spring wheat. Sixteen N fertility treatments were used, including application of different rates of fertilizer N (0–160 kg N ha-1) applied pre-seeding (ZGS 0), at tillering (ZGS 21) and at shooting (ZGS 32) as ammonium nitrate. Split N application provided no benefit in terms of grain yield or apparent recovery of fertilizer N. Application of fertilizer N at ZGS 32 reduced crop yield and apparent recovery of fertilizer N compared with N application at ZGS 0. Application of fertilizer N at ZGS 21 reduced yield and apparent recovery of fertilizer N in grain in 2 of 3 yr, but had no effect on apparent recovery of fertilizer N in the above-ground plant. Delayed fertilizer N application generally increased grain protein. Fertilizer N can be applied at ZGS 21 as required to optimize grain yield provided at least some fertilizer N is applied prior to seeding; however, crop N status cannot reliably be assessed at this time using a SPAD-502 meter. Crop N status can be assessed at ZGS 32 using a SPAD-502 meter; however, fertilizer N application at this time primarily influences grain protein rather than grain yield. These results highlight the need for a means of predicting soil N mineralization potential in order to optimize grain yield in humid environments where carry-over of soil nitrate from the previous growing season is limited. Key words: Triticum aestivum; N mineralization; soil N supply; SPAD-502 meter, leaf chlorophyll index


Weed Science ◽  
1977 ◽  
Vol 25 (4) ◽  
pp. 355-359 ◽  
Author(s):  
Wayne A. Olson ◽  
John D. Nalewaja

The tolerance of wheat (Triticum aestivum L. ‘Waldron’) and wild oat (Avena fatua L.) to various rates of flufenprop-methyl {methyl-2-[benzoyl(3-chloro-4-fluorophenyl)amino]propanoate} applied weekly after wheat and wild oat emergence was determined under field conditions. Wild oat control increased at all growth stages as flufenprop-methyl rate increased. Wild oat control was greater than 80% with flufenprop-methyl at all rates when applied up to 6 weeks after wild oat emergence: (anthesis stage), but decreased when application was delayed further. Wheat was most susceptible to flufenprop-methyl during anthesis. Flufenprop-methyl at 0.56 kg/ha injured weed-free wheat only at the boot and anthesis stages. Injury intensity and the number of weeks that injury remained evident increased as flufenprop-methyl rate increased. Flufenprop-methyl injury to wheat was expressed as reduced plant height, grain yield, and kernels per spike and increased grain protein. Plant height reductions were attributed to reduced cell elongation. Grain yield reductions resulted from reduced kernels per spike.


2020 ◽  
Author(s):  
Colin Peter Singer Kruse ◽  
Alexander D Meyers ◽  
Proma Basu ◽  
Sarahann Hutchinson ◽  
Darron R Luesse ◽  
...  

Abstract Background: Understanding of gravity sensing and response is critical to long-term human habitation in space and can provide new advantages for terrestrial agriculture. To this end, the altered gene expression profile induced by microgravity has been repeatedly queried by microarray and RNA-seq experiments to understand gravitropism. However, the quantification of altered protein abundance in space has been minimally investigated.Results: Proteomic (iTRAQ-labelled LC-MS/MS) and transcriptomic (RNA-seq) analyses simultaneously quantified protein and transcript differential expression of three-day old, etiolated Arabidopsis thaliana seedlings grown aboard the International Space Station along with their ground control counterparts. Protein extracts were fractionated to isolate soluble and membrane proteins and analyzed to detect differentially phosphorylated peptides. In total, 968 RNAs, 107 soluble proteins, and 103 membrane proteins were identified as differentially expressed. In addition, the proteomic analyses identified 16 differential phosphorylation events. Proteomic data delivered novel insights and simultaneously provided new context to previously made observations of gene expression in microgravity. There is a sweeping shift in post-transcriptional mechanisms of gene regulation including RNA-decapping protein DCP5, the splicing factors GRP7 and GRP8, and AGO4. These data also indicate AHA2 and FERONIA as well as CESA1 and SHOU4 as central to the cell wall adaptations seen in spaceflight. Patterns of tubulin-a 1, 3,4 and 6 phosphorylation further reveal an interaction of microtubule and redox homeostasis that mirrors osmotic response signaling elements. The absence of gravity also results in a seemingly wasteful dysregulation of plastid gene transcription. Conclusions: The datasets gathered from Arabidopsis seedlings exposed to microgravity revealed marked impacts on post-transcriptional regulation, cell wall synthesis, redox/microtubule dynamics, and plastid gene transcription. The impact of post-transcriptional regulatory alterations represents an unstudied element of the plant microgravity response with the potential to significantly impact plant growth efficiency and beyond. What’s more, addressing the effects of microgravity on AHA2, CESA1, and alpha tubulins has the potential to enhance cytoskeletal organization and cell wall composition, thereby enhancing biomass production and growth in microgravity. Finally, understanding and manipulating the dysregulation of plastid gene transcription has further potential to address the goal of enhancing plant growth in the stressful conditions of microgravity.


2007 ◽  
Vol 87 (3) ◽  
pp. 503-507 ◽  
Author(s):  
Ross H McKenzie ◽  
Eric Bremer ◽  
Allan B Middleton ◽  
Pat G Pfiffner ◽  
Robert F Dunn ◽  
...  

Field trials were conducted for 3 yr (2002/2003 to 2004/2005) at three locations in southern Alberta to determine the impact of seeding rate and opener type on plant stand and grain yield of winter wheat (Triticum aestivum L.) and winter triticale (× Triticosecale Wittmack). Responses were determined for an optimum date of seeding in early to mid-September and for a late seeding in early to mid-October. Conditions were generally favourable for crop establishment, winter survival and growth, and average site yields ranged from 4.5 to 8.9 Mg ha-1. The disc opener increased spring plant density by 12.5% compared with the hoe opener, but did not affect grain yield. Spring plant density was 23% lower for winter triticale than winter wheat and 20% lower for October-seeded cereals than September-seeded cereals. Late seeding reduced grain yields of winter wheat and winter triticale by an average of 18 and 11%, respectively. Increases in target seeding rates from 150 to 350 plants m-2 (approximately 70 to 160 kg ha-1) did not affect grain yield and quality of September-seeded cereals, but increased grain yield of late-seeded crops by an average of 5 kg per kg increase in seeding rate. High seeding rates did not fully compensate for yield losses caused by late seeding. Key words: Triticum aestivum, × Triticosecale, plant stand density, yield


Sign in / Sign up

Export Citation Format

Share Document