scholarly journals Can We Harness “Enviromics” to Accelerate Crop Improvement by Integrating Breeding and Agronomy?

2021 ◽  
Vol 12 ◽  
Author(s):  
Mark Cooper ◽  
Carlos D. Messina

The diverse consequences of genotype-by-environment (GxE) interactions determine trait phenotypes across levels of biological organization for crops, challenging our ambition to predict trait phenotypes from genomic information alone. GxE interactions have many implications for optimizing both genetic gain through plant breeding and crop productivity through on-farm agronomic management. Advances in genomics technologies have provided many suitable predictors for the genotype dimension of GxE interactions. Emerging advances in high-throughput proximal and remote sensor technologies have stimulated the development of “enviromics” as a community of practice, which has the potential to provide suitable predictors for the environment dimension of GxE interactions. Recently, several bespoke examples have emerged demonstrating the nascent potential for enhancing the prediction of yield and other complex trait phenotypes of crop plants through including effects of GxE interactions within prediction models. These encouraging results motivate the development of new prediction methods to accelerate crop improvement. If we can automate methods to identify and harness suitable sets of coordinated genotypic and environmental predictors, this will open new opportunities to upscale and operationalize prediction of the consequences of GxE interactions. This would provide a foundation for accelerating crop improvement through integrating the contributions of both breeding and agronomy. Here we draw on our experience from improvement of maize productivity for the range of water-driven environments across the US corn-belt. We provide perspectives from the maize case study to prioritize promising opportunities to further develop and automate “enviromics” methodologies to accelerate crop improvement through integrated breeding and agronomic approaches for a wider range of crops and environmental targets.

Author(s):  
Mark Cooper ◽  
Kai P. Voss-Fels ◽  
Carlos D. Messina ◽  
Tom Tang ◽  
Graeme L. Hammer

Abstract Key message Climate change and Genotype-by-Environment-by-Management interactions together challenge our strategies for crop improvement. Research to advance prediction methods for breeding and agronomy is opening new opportunities to tackle these challenges and overcome on-farm crop productivity yield-gaps through design of responsive crop improvement strategies. Abstract Genotype-by-Environment-by-Management (G × E × M) interactions underpin many aspects of crop productivity. An important question for crop improvement is “How can breeders and agronomists effectively explore the diverse opportunities within the high dimensionality of the complex G × E × M factorial to achieve sustainable improvements in crop productivity?” Whenever G × E × M interactions make important contributions to attainment of crop productivity, we should consider how to design crop improvement strategies that can explore the potential space of G × E × M possibilities, reveal the interesting Genotype–Management (G–M) technology opportunities for the Target Population of Environments (TPE), and enable the practical exploitation of the associated improved levels of crop productivity under on-farm conditions. Climate change adds additional layers of complexity and uncertainty to this challenge, by introducing directional changes in the environmental dimension of the G × E × M factorial. These directional changes have the potential to create further conditional changes in the contributions of the genetic and management dimensions to future crop productivity. Therefore, in the presence of G × E × M interactions and climate change, the challenge for both breeders and agronomists is to co-design new G–M technologies for a non-stationary TPE. Understanding these conditional changes in crop productivity through the relevant sciences for each dimension, Genotype, Environment, and Management, creates opportunities to predict novel G–M technology combinations suitable to achieve sustainable crop productivity and global food security targets for the likely climate change scenarios. Here we consider critical foundations required for any prediction framework that aims to move us from the current unprepared state of describing G × E × M outcomes to a future responsive state equipped to predict the crop productivity consequences of G–M technology combinations for the range of environmental conditions expected for a complex, non-stationary TPE under the influences of climate change.


2019 ◽  
Vol 70 (1) ◽  
pp. 781-808 ◽  
Author(s):  
Andrew D.B. Leakey ◽  
John N. Ferguson ◽  
Charles P. Pignon ◽  
Alex Wu ◽  
Zhenong Jin ◽  
...  

The ratio of plant carbon gain to water use, known as water use efficiency (WUE), has long been recognized as a key constraint on crop production and an important target for crop improvement. WUE is a physiologically and genetically complex trait that can be defined at a range of scales. Many component traits directly influence WUE, including photosynthesis, stomatal and mesophyll conductances, and canopy structure. Interactions of carbon and water relations with diverse aspects of the environment and crop development also modulate WUE. As a consequence, enhancing WUE by breeding or biotechnology has proven challenging but not impossible. This review aims to synthesize new knowledge of WUE arising from advances in phenotyping, modeling, physiology, genetics, and molecular biology in the context of classical theoretical principles. In addition, we discuss how rising atmospheric CO2concentration has created and will continue to create opportunities for enhancing WUE by modifying the trade-off between photosynthesis and transpiration.


2019 ◽  
Vol 46 (1A) ◽  
pp. 99-103 ◽  
Author(s):  
R.S. Tubbs

ABSTRACT Many guidelines for agronomic management of peanut (Arachis hypogaea L.) are well-established when considered individually. However, crop productivity is typically driven by more than one variable and the interactions of multiple practices are not as easily derived. With an ever-changing availability of new cultivars with greater disease resistance, improved yield and/or grade potential, and varying growth characteristics, there is a steady need for agronomic research in both the immediate and distant futures. In some cases, traditional agronomic experimentation on variables such as rotations, tillage and land management, timing of planting, row pattern and spacing, seeding rate, irrigation, plant growth regulators, inoculant/biological products and fertilization need to be revisited every several years when a new cultivar becomes commercially relevant. This is especially true with differing climates and soil types in various growing regions. The effects of climate and weather along with pest pressure, pest management programs, and maturity characteristics of cultivars are also drawing the attention of peanut agronomists to improve predictability of optimum maturity. Yet, peanut agronomists are also attempting to adapt new ideas to assist with management decisions and increase revenue potential for growers to stay competitive in a very volatile commodity market domestically and with fluctuating export opportunities. The adoption of technologies such as GPS guidance, seed monitors, aerial imagery, and variable rate planting or spraying equipment are becoming more common to assist growers with better precision in planting and digging practices, ensuring proper seed placement, and assessing problematic areas in the field for site-specific in-season management decisions. So many excellent achievements have been made through the collaborations of scientists of the American Peanut Research and Education Society over the last 50 years, and there is no doubt that similar collaborations remain strong throughout the current membership to lead us into the future.


2013 ◽  
Vol 40 (12) ◽  
pp. v ◽  
Author(s):  
Rajeev K. Varshney ◽  
Himabindu Kudapa

Legumes represent the most valued food sources in agriculture after cereals. Despite the advances made in breeding food legumes, there is a need to develop and further improve legume productivity to meet increasing food demand worldwide. Several biotic and abiotic stresses affect legume crop productivity throughout the world. The study of legume genetics, genomics and biology are all important in order to understand the limitations of yield of legume crops and to support our legume breeding programs. With the advent of huge genomic resources and modern technologies, legume research can be directed towards precise understanding of the target genes responsible for controlling important traits for yield potential, and for resistance to abiotic and biotic stresses. Programmed and systematic research will lead to developing high yielding, stress tolerant and early maturing varieties. This issue of Functional Plant Biology is dedicated to ‘Legume Biology’ research covering part of the work presented at VI International Conference on Legume Genetics and Genomics held at Hyderabad, India, in 2012. The 13 contributions cover recent advances in legume research in the context of plant architecture and trait mapping, functional genomics, biotic stress and abiotic stress.


2017 ◽  
Vol 4 (1) ◽  
pp. 21-25 ◽  
Author(s):  
Sintho Wahyuning ARDIE ◽  
Nurul Khumaida ◽  
Nurul Fauziah ◽  
Yudiansyah Yudiansyah

Foxtail millet (Setaria italica L.) is an important crop in areas where harsh environmental conditions limit crop productivity, including in high salinity and drought prone areas. In Indonesia millet is cultivated in certain areas; however, superior varieties are less developed in the country. The objective of this study was to analyze the genetic diversity among foxtail genotypes using RAPD markers. Genomic DNA of ten foxtail millet genotypes was amplified using 26 random primers through RAPD analysis. Of these primers, 22 produced reproducible amplicons and were polymorphic among the 10 foxtail millet genotypes. The number of polymorphic markers for each primer varied from 1 (primer E15) to 14 (primer M17). The amplified product size ranged from 120 to 2500 base pairs (bp). A dendrogram constructed based on the UPGMA clustering method put all genotypes in 5 distinct groups at 0.64 coefficient level. Diverse genotypes identified in this study can be used as potential parents in an efficient crop improvement program.


Author(s):  
Michael J. Bell ◽  
Michael L. Thompson ◽  
Philip W. Moody

AbstractThe purpose of this chapter is to describe how bioavailable soil K is assessed or predicted by soil tests. Soil testing commonly refers to the collection of a sample of soil representative of a field or agronomic management unit and, by way of extraction using chemical reagents, determination of the quantity of a nutrient that can be related to plant uptake or yield. Normally only a small fraction of the total quantity of the nutrient present in the soil is extracted during the procedure, but if that amount can be correlated with actual crop uptake or overall crop productivity, then the soil test is deemed to have useful predictive power.Soil tests are routinely used to guide applications of fertilizer to soil so that crop demand for nutrients can be met effectively and economically. Here, we summarize the procedures involved in collecting a representative soil sample for K analysis, outline how that sample should be prepared for laboratory analysis, highlight the principles and mode of action of routine soil tests, and explore some common issues that may confound the correlation between a soil K test result and plant K acquisition or crop yield. Soil testing methods are discussed in the context of their relationship to the different forms of soil K and the in-soil chemical processes that may change these forms into K that can be taken up by roots.


2021 ◽  
Vol 21 (no 1) ◽  
Author(s):  
Z. Mary Swaroopa ◽  
R. Jaya Madhuri

Crop productivity and crop improvement are colloidal components as the demand of the increasing population, worldwide for the provision of food from crops require dedicated agricultural strategies that tend to lean on natural, available and, beneficial, easily reproducible means of products. In general, the soil components rich in organic matter that can avail rich microbial community initiates agricultural productivity in abundance and in the way to deduce it. But, commercially available chemical pesticides, pollution in the environment, biotic and abiotic constituents are found to be the key components that stress the crop productivity. This can be overtaken by the microbes that can function as both “bio-fertilizer” and “antagonistic” agents, mentioned as Plant growth-promoting rhizobacteria(PGPR), as they present satisfactory, advantageous impact when ever required, due to their presence in the rhizospheric region, by providing nutrients uptake from soil and controlling the unnecessary hazardous bio-impact on plants .Present study relies on sustainable agricultural development that utilizes the bacteria from the rhizospheric region thereby recommending bio-formulation in the future to mobilize the unaware farmer for better productivity, free of devastating chemical components that enter the food chain via crop produced by using chemicals, and also by easy means without affecting the surrounding environment and human health. In this context, Sclerotium rolfsii, a deleterious pathogen that affects groundnut crops predominantly, how best can be prevented and can be suppressed by using beneficial PGPR is been studied.


2021 ◽  
Author(s):  
Sophie B. Cowling ◽  
Hamidreza Soltani ◽  
Sean Mayes ◽  
Erik H. Murchie

AbstractStomata are dynamic structures that control the gaseous exchange of CO2 from the external to internal environment and water loss through transpiration. The density and morphology of stomata have important consequences in crop productivity and water use efficiency, both are integral considerations when breeding climate change resilient crops. The phenotyping of stomata is a slow manual process and provides a substantial bottleneck when characterising phenotypic and genetic variation for crop improvement. There are currently no open-source methods to automate stomatal counting. We used 380 human annotated micrographs of O. glaberrima and O. sativa at x20 and x40 objectives for testing and training. Training was completed using the transfer learning for deep neural networks method and R-CNN object detection model. At a x40 objective our method was able to accurately detect stomata (n = 540, r = 0.94, p<0.0001), with an overall similarity of 99% between human and automated counting methods. Our method can batch process large files of images. As proof of concept, characterised the stomatal density in a population of 155 O. glaberrima accessions, using 13,100 micrographs. Here, we present developed Stomata Detector; an open source, sophisticated piece of software for the plant science community that can accurately identify stomata in Oryza spp., and potentially other monocot species.


1994 ◽  
Vol 23 (3) ◽  
pp. 189-195 ◽  
Author(s):  
Malcolm J. Blackie

Maize is a major food crop in southern and eastern Africa. It is widely grown by smallholders, and forms an important part of the transformation of smallholder agricultural systems that has taken place this century. But, despite commendable efforts in technology development at both the national and the international level, agricultural productivity is well below that necessary to help create strong, healthy African economies. No single solution is likely to be found for this problem. In this paper, two major possible foci are outlined. First, there is a need to match advances in crop improvement (through breeding) with developments in crop management. Second, and directly associated with the search for improved crop management methods, a concerted effort, involving public and private agricultural service agencies, as well as local farmer groups, NGOs, and other rural associations, is needed so that priorities are set correctly, that the right questions are asked, and that the solutions found are delivered quickly to those who need them.


2017 ◽  
Vol 6 (3) ◽  
pp. 14
Author(s):  
Elias Kuntashula

There has been low uptake of soil fertility improving tree technologies that have been promoted as alternatives to the costly inorganic fertiliser among the poor resource farmers of Sub Saharan Africa. This is surprising given that the majority of smallholder farmers cannot afford inorganic fertilisers. Are these technologies effective? Using data collected in 2013 from 1,231 households across six districts of Zambia, this study showed that the tree technologies increased maize productivity. However, increases in maize productivity were less than those obtained from controlled on-station and field experiments where the technologies could double or more than double maize productivity according to literature. The technologies capacity to marginally contribute to wealth creation was confirmed. Socioeconomic constraints including labour, information access, land and credit need to be tackled for the technologies to give maximum benefits. Research on fertiliser trees should therefore be redirected towards the discovery of such resource constraints saving technologies. 


Sign in / Sign up

Export Citation Format

Share Document