scholarly journals Tackling G × E × M interactions to close on-farm yield-gaps: creating novel pathways for crop improvement by predicting contributions of genetics and management to crop productivity

Author(s):  
Mark Cooper ◽  
Kai P. Voss-Fels ◽  
Carlos D. Messina ◽  
Tom Tang ◽  
Graeme L. Hammer

Abstract Key message Climate change and Genotype-by-Environment-by-Management interactions together challenge our strategies for crop improvement. Research to advance prediction methods for breeding and agronomy is opening new opportunities to tackle these challenges and overcome on-farm crop productivity yield-gaps through design of responsive crop improvement strategies. Abstract Genotype-by-Environment-by-Management (G × E × M) interactions underpin many aspects of crop productivity. An important question for crop improvement is “How can breeders and agronomists effectively explore the diverse opportunities within the high dimensionality of the complex G × E × M factorial to achieve sustainable improvements in crop productivity?” Whenever G × E × M interactions make important contributions to attainment of crop productivity, we should consider how to design crop improvement strategies that can explore the potential space of G × E × M possibilities, reveal the interesting Genotype–Management (G–M) technology opportunities for the Target Population of Environments (TPE), and enable the practical exploitation of the associated improved levels of crop productivity under on-farm conditions. Climate change adds additional layers of complexity and uncertainty to this challenge, by introducing directional changes in the environmental dimension of the G × E × M factorial. These directional changes have the potential to create further conditional changes in the contributions of the genetic and management dimensions to future crop productivity. Therefore, in the presence of G × E × M interactions and climate change, the challenge for both breeders and agronomists is to co-design new G–M technologies for a non-stationary TPE. Understanding these conditional changes in crop productivity through the relevant sciences for each dimension, Genotype, Environment, and Management, creates opportunities to predict novel G–M technology combinations suitable to achieve sustainable crop productivity and global food security targets for the likely climate change scenarios. Here we consider critical foundations required for any prediction framework that aims to move us from the current unprepared state of describing G × E × M outcomes to a future responsive state equipped to predict the crop productivity consequences of G–M technology combinations for the range of environmental conditions expected for a complex, non-stationary TPE under the influences of climate change.

2022 ◽  
pp. 270-283
Author(s):  
Christian Thierfelder ◽  
Peter Steward

Abstract Climate change and soil fertility decline are threatening food security in southern Africa and efforts have been made to adapt current cropping systems to the needs of smallholder farmers. Conservation Agriculture (CA) based on minimum soil disturbance, crop residue retention and crop diversification has been proposed as a strategy to address the challenges smallholder farmers face. Here we analyse the potential contributions of CA towards adaptation to the effects of climate change by summarizing data on infiltration, soil moisture dynamics and crop productivity under heat and drought stress. The data were taken in the main from CIMMYT's on-farm and on-station trial network. Data show that CA systems maintain 0.7-7.9 times higher water infiltration than the conventional tilled system depending on soil type, which increases soil moisture during the cropping season by 11%-31% between CA treatments and the conventional control treatment. This leads to greater adaptive capacity of CA systems during in-season dry spells and under heat stress. A supporting regional maize productivity assessment, analysing the results of numerous on-farm and on-station experiments, showed that CA systems will outperform conventional tillage practices (CP), especially on light-textured soils, under heat and drought stress. With higher rainfall and low heat stress, this relation was more positive towards CP and on clay soil there was no benefit of practising CA when rainfall was high. The long dry season and limited biomass production of CA systems in southern Africa require complementary good agricultural practices to increase other soil quality parameters (e.g. increased soil carbon) to maintain higher productivity and sustainability over time. This can be addressed by combinations of improved stress-tolerant seed, targeted fertilization, inclusion of tree-based components or green manure cover crops in the farming system, scale-appropriate mechanization and improved weed control strategies.


2021 ◽  
Author(s):  
Michiel van Dijk ◽  
Tom Morley ◽  
Marie Luise Rau ◽  
Yashar Saghai

Abstract Ending hunger and achieving food security - one of the UN sustainable development goals - is a major global challenge. To inform the policy debate, quantified global scenarios and projections are used to assess long-term future global food security under a range of socio-economic and climate change scenarios. However, due to differences in model design and scenario assumptions, there is uncertainty about the range of food security projections and outcomes. We conducted a systematic literature review and meta-analysis to assess the range of future global food security projections to 2050. We reviewed 57 global food security projection and quantitative scenario studies that have been published over the last two decades and discussed the methodology, underlying drivers, indicators and projections. We harvested quantitative information from 26 studies to compare future trends of the two most used global food security indicators: per capita food demand (593 projections) and population at risk of hunger (358 projections). We found that across five representative scenarios that span divergent but plausible socio-economic futures total global food demand is expected to increase by +35% to +56% between 2010 and 2050, while population at risk of hunger is expected to change by -91% to +8% over the same period. If climate change is taken into account the range changes slightly (+30% to +62% for total food demand and -91% to +30% for population at risk of hunger) but overall we do not find statistical support for differences in projections with and without climate change. Finally, our review suggests that current modeling approaches can be improved by better incorporating several options that have been proposed to tackle global food security, in particular aquaculture and ‘future foods’, and expand the number of indicators to better cover the multiple dimensions of food security. The results of our review can be used to benchmark new global food security projections and quantitative scenario studies and inform policy analysis and the public debate on the future of food.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ali Razzaq ◽  
Parwinder Kaur ◽  
Naheed Akhter ◽  
Shabir Hussain Wani ◽  
Fozia Saleem

Climate change is a threat to global food security due to the reduction of crop productivity around the globe. Food security is a matter of concern for stakeholders and policymakers as the global population is predicted to bypass 10 billion in the coming years. Crop improvement via modern breeding techniques along with efficient agronomic practices innovations in microbiome applications, and exploiting the natural variations in underutilized crops is an excellent way forward to fulfill future food requirements. In this review, we describe the next-generation breeding tools that can be used to increase crop production by developing climate-resilient superior genotypes to cope with the future challenges of global food security. Recent innovations in genomic-assisted breeding (GAB) strategies allow the construction of highly annotated crop pan-genomes to give a snapshot of the full landscape of genetic diversity (GD) and recapture the lost gene repertoire of a species. Pan-genomes provide new platforms to exploit these unique genes or genetic variation for optimizing breeding programs. The advent of next-generation clustered regularly interspaced short palindromic repeat/CRISPR-associated (CRISPR/Cas) systems, such as prime editing, base editing, and de nova domestication, has institutionalized the idea that genome editing is revamped for crop improvement. Also, the availability of versatile Cas orthologs, including Cas9, Cas12, Cas13, and Cas14, improved the editing efficiency. Now, the CRISPR/Cas systems have numerous applications in crop research and successfully edit the major crop to develop resistance against abiotic and biotic stress. By adopting high-throughput phenotyping approaches and big data analytics tools like artificial intelligence (AI) and machine learning (ML), agriculture is heading toward automation or digitalization. The integration of speed breeding with genomic and phenomic tools can allow rapid gene identifications and ultimately accelerate crop improvement programs. In addition, the integration of next-generation multidisciplinary breeding platforms can open exciting avenues to develop climate-ready crops toward global food security.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1609
Author(s):  
Susana Redondo-Gómez ◽  
Jennifer Mesa-Marín ◽  
Jesús A. Pérez-Romero ◽  
Javier López-Jurado ◽  
Jesús V. García-López ◽  
...  

Soil salinization is an environmental problem that adversely affects plant growth and crop productivity worldwide. As an alternative to the conventional approach of breeding salt-tolerant plant cultivars, we explored the use of plant-growth-promoting rhizobacteria (PGPR) from halophytic plants to enhance crop growth under saline conditions. Here, we report the effect of five PGPR consortia from halophytes on the growth of eight (alfalfa, flax, maize, millet, rice, strawberry, sunflower, and wheat) of the crops most commonly produced on salinized soils worldwide. To test the efficiency of halotolerant consortia, we designed a complex environmental matrix simulating future climate-change scenarios, including increased CO2 levels and temperature. Overall, biofertilizers enhanced growth of most crops with respect to non-inoculated control plants under different CO2 concentrations (400/700 ppm), temperatures (25/+4 °C), and salinity conditions (0 and 85 mM NaCl). Biofertilizers counteracted the detrimental effect of salinity on crop growth. Specifically, strawberry and rice showed the greatest positive additive response to inoculation in the presence of salt; above-ground biomasses were 35% and 3% greater, respectively, than their respective control grown without salt. Furthermore, depending on the interaction of environmental factors (salinity × CO2 × temperature) analyzed, the results varied—influencing the most effective biofertilizer determined for each crop now, or in the future. Our findings highlight the importance of conducting studies that consider stress interaction for realistic assessments of the potential of biofertilizers in a climate-changed world.


2018 ◽  
Vol 23 (6) ◽  
pp. 679-701 ◽  
Author(s):  
Ashley Gorst ◽  
Ali Dehlavi ◽  
Ben Groom

AbstractThe effectiveness of adaptation strategies is crucial for reducing the costs of climate change. Using plot-level data from a specifically designed survey conducted in Pakistan, we investigate the productive benefits for farmers who adapt to climate change. The impact of implementing on-farm adaptation strategies is estimated separately for two staple crops: wheat and rice. We employ propensity score matching and endogenous switching regressions to account for the possibility that farmers self-select into adaptation. Estimated productivity gains are positive and significant for rice farmers who adapted, but negligible for wheat. Counterfactual gains for non-adapters were significantly positive, which is potentially a sign of transactions costs to adaptation. Other factors associated with adaptation were formal credit and extension, underscoring the importance of addressing institutional and informational constraints that inhibit farmers from improving their farming practices. The findings provide evidence for the Pakistani Planning and Development Department's ongoing assessment of climate-related agricultural losses.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 177
Author(s):  
Gokhan Hacisalihoglu

Global food security and sustainability in the time of pandemics (COVID-19) and a growing world population are important challenges that will require optimized crop productivity under the anticipated effects of climate change [...]


Proceedings ◽  
2020 ◽  
Vol 36 (1) ◽  
pp. 157
Author(s):  
Van Touch ◽  
De Li Liu ◽  
Robert John Martin ◽  
Jeannette Fiona Scott ◽  
Annette Cowie ◽  
...  

Production of upland crops such as maize, cassava, soybean, mungbean, peanut and sesame contribute importantly to Cambodia’s economy and food security, especially for those who live in the upland areas found in almost every province of Cambodia. The upland farmers are highly vulnerable to climate variability and climate change due to low adaptive capacity and high dependence on rainfed crop production for their livelihoods. This study involved in-depth review of literature, conducting on-farm experiments, downscaling climate projections from the coupled Model Intercomparison Project Phase 5 (CMIP5) General Circulation Models (GCMs), running Agricultural Production Systems sIMulator (APSIM) simulations and farmer consultation to define climate impacts and explore adaptation options that could build resilience to the existing and projected climate change scenarios for upland cropping farmers in Northwest Cambodia. Insufficient water and nutrient depletion were the main production risks and yield limiting factors. On-farm adaptation options such as modifying sowing windows, including legumes in crop rotations and additional fertiliser application are likely to substantially minimise risks from climatic impacts, and increase and sustain returns. Wider adoption of conservation agriculture practices—including reduced tillage and crop residue retention, that enhance soil structure and soil water holding capacity and reduce soil erosion, should enhance productivity and incomes, while making the farming systems more resilient to the existing and projected climate variability and climate change, and other production stressors.


2005 ◽  
Vol 33 (1) ◽  
pp. 185-188 ◽  
Author(s):  
Csilla Farkas ◽  
Roger Randriamampianina ◽  
Juraj Majerčak

Sign in / Sign up

Export Citation Format

Share Document