scholarly journals Advances and Perspectives of Transgenic Technology and Biotechnological Application in Forest Trees

2021 ◽  
Vol 12 ◽  
Author(s):  
Yiyi Yin ◽  
Chun Wang ◽  
Dandan Xiao ◽  
Yanting Liang ◽  
Yanwei Wang

Transgenic technology is increasingly used in forest-tree breeding to overcome the disadvantages of traditional breeding methods, such as a long breeding cycle, complex cultivation environment, and complicated procedures. By introducing exogenous DNA, genes tightly related or contributed to ideal traits—including insect, disease, and herbicide resistance—were transferred into diverse forest trees, and genetically modified (GM) trees including poplars were cultivated. It is beneficial to develop new varieties of GM trees of high quality and promote the genetic improvement of forests. However, the low transformation efficiency has hampered the cultivation of GM trees and the identification of the molecular genetic mechanism in forest trees compared to annual herbaceous plants such as Oryza sativa. In this study, we reviewed advances in transgenic technology of forest trees, including the principles, advantages and disadvantages of diverse genetic transformation methods, and their application for trait improvement. The review provides insight into the establishment and improvement of genetic transformation systems for forest tree species. Challenges and perspectives pertaining to the genetic transformation of forest trees are also discussed.

2021 ◽  
Vol 22 (19) ◽  
pp. 10583
Author(s):  
Sunny Ahmar ◽  
Paulina Ballesta ◽  
Mohsin Ali ◽  
Freddy Mora-Poblete

Forest tree breeding efforts have focused mainly on improving traits of economic importance, selecting trees suited to new environments or generating trees that are more resilient to biotic and abiotic stressors. This review describes various methods of forest tree selection assisted by genomics and the main technological challenges and achievements in research at the genomic level. Due to the long rotation time of a forest plantation and the resulting long generation times necessary to complete a breeding cycle, the use of advanced techniques with traditional breeding have been necessary, allowing the use of more precise methods for determining the genetic architecture of traits of interest, such as genome-wide association studies (GWASs) and genomic selection (GS). In this sense, main factors that determine the accuracy of genomic prediction models are also addressed. In turn, the introduction of genome editing opens the door to new possibilities in forest trees and especially clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9). It is a highly efficient and effective genome editing technique that has been used to effectively implement targetable changes at specific places in the genome of a forest tree. In this sense, forest trees still lack a transformation method and an inefficient number of genotypes for CRISPR/Cas9. This challenge could be addressed with the use of the newly developing technique GRF-GIF with speed breeding.


Forests ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1190
Author(s):  
Vadim G. Lebedev ◽  
Tatyana N. Lebedeva ◽  
Aleksey I. Chernodubov ◽  
Konstantin A. Shestibratov

The breeding of forest trees is only a few decades old, and is a much more complicated, longer, and expensive endeavor than the breeding of agricultural crops. One breeding cycle for forest trees can take 20–30 years. Recent advances in genomics and molecular biology have revolutionized traditional plant breeding based on visual phenotype assessment: the development of different types of molecular markers has made genotype selection possible. Marker-assisted breeding can significantly accelerate the breeding process, but this method has not been shown to be effective for selection of complex traits on forest trees. This new method of genomic selection is based on the analysis of all effects of quantitative trait loci (QTLs) using a large number of molecular markers distributed throughout the genome, which makes it possible to assess the genomic estimated breeding value (GEBV) of an individual. This approach is expected to be much more efficient for forest tree improvement than traditional breeding. Here, we review the current state of the art in the application of genomic selection in forest tree breeding and discuss different methods of genotyping and phenotyping. We also compare the accuracies of genomic prediction models and highlight the importance of a prior cost-benefit analysis before implementing genomic selection. Perspectives for the further development of this approach in forest breeding are also discussed: expanding the range of species and the list of valuable traits, the application of high-throughput phenotyping methods, and the possibility of using epigenetic variance to improve of forest trees.


1975 ◽  
Vol 188 (1092) ◽  
pp. 313-326 ◽  

Despite the great importance for forest tree breeding, very limited knowledge is yet available about the breeding systems of forest trees. Where incompatibility has been studied in the hardwoods; patterns have been observed which confirm the general rules detected for other angiosperms. Self- and interspecific incompatibility at the level of pollen tube growth has been reported for example in Betula and Alnus . In Alnus one case of unilateral interspecific incompatibility has been found. Self-incompatibility has, so far, not been reported from the conifers. Inter-specific incompatibility in the form of the arrestment of the pollen tube growth in the nucellus tissue has been observed in Picea and is particularly clear in Pinus crosses between the subgenera and Haploxylon and Diploxylon , but also within the Diploxylon -group. The nature of the incompatibility mechanism is still unknown, but serological differences related to the behaviour in the crosses has been detected in birch and pine pollen. It is suggested that the complex polysaccharidic composition of the cell walls and membranes might form a specific stereochemical basis for the incompatibility reaction. The presence of a combination of self-pollination, polyembryony and genetic load is discussed as an alternative mechanism favouring outbreeding in the Gymnosperms.


1962 ◽  
Vol 38 (3) ◽  
pp. 356-362 ◽  
Author(s):  
C. Heimburger

Breeding for disease resistance in forest trees is a specialized kind of forest tree breeding. With breeding of white pines for resistance to blister rust as an example, the various problems encountered and solved are described. Resistance to blister rust in eastern white pine has thus far been found to be inherited on a polygenic basis. This influences the choice of effective breeding methods and the silvicultural use of the resistant materials obtained. The genetic basis of superior resistance found in exotic species, such as Balkan white pine, Japanese white pine and Himalayan white pine is also influencing the breeding methods. Because of its early flowering, breeding work with Balkan white pine has progressed further than with other exotic species. Indications have been obtained that resistance in this species is also based on polygenes. Some of these are complementary to those found in eastern white pine. In Himalayan white pine materials the presence of recessive major genes for resistance as well as polygenes is probable. The possible use of these findings in the development of resistant white pine materials and their use in the establishment of artificially and naturally regenerated stands is discussed.


2018 ◽  
Author(s):  
A Calleja-Rodriguez ◽  
Z Li ◽  
H R Hallingbäck ◽  
M J Sillanpää ◽  
X Wu H ◽  
...  

AbstractIn forest tree breeding, QTL identification aims to accelerate the breeding cycle and increase the genetic gain of traits with economical and ecological value. In our study, both phenotypic data and predicted breeding values were used in the identification QTL linked to the adaptive value in a three-generation pedigree population, for the first time in a conifer species (Pinus sylvestris L.). A total of 11 470 open pollinated F2-progeny trees established at three different locations, were measured for growth and adaptive traits. Breeding values were predicted for their 360 mothers, originating from a single cross of two parents. A multilevel LASSO association analysis was conducted to detect QTL using genotypes of the mothers with the corresponding phenotypes and estimated breeding values (EBVs). Different levels of genotype-by-environment (G×E) effects among sites and ages were detected for survival and height. Moderate-to-low narrow sense heritabilities and EBVs accuracies were found for all traits and all sites. We identified 18 AFLPs and 12 SNPs to be associated with QTL for one or more traits. 62 QTL were significant with percentages of variance explained ranging from 1.7 to 18.9%, mostly for traits based on phenotypic data. Two SNP-QTL showed pleiotropic effects for traits related with survival, seed and flower production. Furthermore, we detected several QTL with significant effects across multiple ages, which could be considered as strong candidate loci for early selection. The lack of reproducibility of some QTL detected across sites may be due to environmental heterogeneity and QTL-by-environment effects.


2020 ◽  
Vol 48 (2) ◽  
pp. 572-587
Author(s):  
Wenting XU ◽  
Miao ZHANG ◽  
Chen WANG ◽  
Xiongzhen LOU ◽  
Xiao HAN ◽  
...  

Phoebe bournei, a plant species endemic to China, is a precious timber tree and widely used in landscaping. This tree contains numerous secondary metabolites, underscoring its potential economic value. However, studies on this species, including molecular genetic research, remain limited. In this study, both a somatic embryogenesis (SE) technical system and Agrobacterium-mediated genetic transformation were successfully employed in P. bournei for the first time. The SE technical system was constructed using immature embryos as original material. The primary embryo and embryonic callus induction rates were 30.66% and 41.67%, respectively. The highest rate of embryonic callus proliferation was 3.84. The maximum maturity coefficient and germination rate were 53.44/g and 39%, respectively. Agrobacterium-mediated genetic transformation was performed using the SE technical system, and the highest transformation rate was 11.24%. The results presented here are the first to demonstrate an efficient approach to achieve numerous P. bournei plantlets, which serves as the basis for artificial cultivation and resource conservation. Furthermore, the genetic transformation platform constructed in this study will facilitate assessment of gene function and molecular regulation.


1993 ◽  
Vol 50 (4) ◽  
pp. 325-336 ◽  
Author(s):  
L Jouanin ◽  
ACM Brasileiro ◽  
JC Leplé ◽  
G Pilate ◽  
D Cornu

2021 ◽  
Author(s):  
Stella White ◽  
Ribka Sionita Tarigan ◽  
Anak Agung Ketut Aryawan ◽  
Edgar Turner ◽  
Sarah Luke ◽  
...  

<p>Oil palm (OP) growers are under pressure to reduce their environmental impact. Ecosystem function and biodiversity are at the forefront of the issue, but what effect do changes in management practices have on greenhouse gas (GHG) fluxes from plantations? </p><p>The Riparian Ecosystem Restoration in Tropical Agriculture (RERTA) Project is a collaboration between the University of Cambridge and the SMART Research Institute in Riau, Indonesia. This project explores the ecological changes resulting from the restoration of riparian margins between plantations and watercourses. Four management strategies were applied on both sides of a river to create 50m riparian buffers, 400m in length: (1) A control treatment of no restoration, the removal of mature OP and replanting of young OP to the river margin; (2) Little to no agricultural management of mature OP; (3) Clearance of mature OP and enrichment planting with native forest trees; (4) Little or no agricultural management of mature OP and enrichment planting with native forest trees. Here we present a specific objective to investigate the effect of riparian restoration – and related changes in soil characteristics, structure and vegetation cover – on fluxes of N<sub>2</sub>O, CH<sub>4</sub> and CO<sub>2</sub> from mineral soils.</p><p>The experimental site began as a mature OP plantation, with monthly background measurements taken between January and April 2019. Palms were felled in April 2019 and monthly sampling was resumed when replanting and restoration began, in October 2019. We measured GHGs using static chambers; 6 in each riparian treatment and 16 in the actual OP plantation, 40 chambers in total. Samples were analysed using GC-FID/µECD.</p><p>Background measurements before felling showed high variability, but indicated no difference between the four experimental plots and the rest of the plantation. Fluxes measured following replanting were also highly variable, with no significant differences observed between treatments. N<sub>2</sub>O fluxes were relatively low before felling as the mature palms were no longer fertilised. Higher emissions were seen in the disturbed immature OP and forest tree treatments following replanting. Though the sites appeared to recover quickly and emission fluxes decreased after a few months, presumably as the soil settled and new vegetation began to grow. CH<sub>4</sub> uptake was seen in the immature OP treatment immediately after replanting. In subsequent months no clear trends of CH<sub>4</sub> uptake or emission were observed, with the greatest variability generally seen in the forest tree treatment. CH<sub>4</sub> emissions increased in October 2020 with the beginning of the rainy season, most notably in mature OP and mature OP with forest tree treatments. Following restoration CO<sub>2</sub> emissions were higher in treatments with established plant communities – mature OP and mature OP with forest trees.</p><p>These results suggest that riparian restoration had no significant effect on GHG fluxes from mineral soils, and would not alter the overall GHG budget of a plantation. If there is no additional GHG burden and riparian restoration results in enhancing biodiversity and ecosystem services as well as improving water quality, it will be a viable management option to improve the environmental impact of an OP plantation.</p>


Sign in / Sign up

Export Citation Format

Share Document