scholarly journals Preserved functional connectivity in the default mode and salience networks is associated with youthful memory in superaging

2018 ◽  
Author(s):  
Jiahe Zhang ◽  
Joseph Andreano ◽  
Bradford C. Dickerson ◽  
Alexandra Touroutoglou ◽  
Lisa Feldman Barrett

ABSTRACT“Superagers” are older adults who, despite their advanced age, maintain youthful memory. Previous morphometry studies revealed multiple default mode network (DMN) and salience network (SN) regions whose cortical thickness is preserved in superagers and correlates with memory performance. In this study, we examined the intrinsic functional connectivity within DMN and SN in 41 young (24.5 ± 3.6 years old) and 40 elderly adults (66.9 ± 5.5 years old). As in prior studies, superaging was defined as youthful performance on a memory recall task, the California Verbal Learning Test (CVLT). Participants underwent a resting state fMRI scan and performed a separate visual-verbal recognition memory task. As predicted, within both DMN and SN, superagers had stronger connectivity compared to typical older adults and similar connectivity compared to young adults. Superagers also performed similarly to young adults and better than typical older adults on the recognition task, demonstrating youthful episodic memory that generalized across memory tasks. Stronger connectivity within each network independently predicted better performance on both the CVLT and recognition task in older adults. Variation in intrinsic connectivity explained unique variance in memory performance, above and beyond preserved neuroanatomy. A post-hoc analysis revealed that DMN and SN nodes were more strongly inversely correlated in superagers than in typical older adults but were similarly correlated in superagers and young adults. Stronger between-network inverse correlations also predicted better memory performance in the entire sample of older adults. These results extend our understanding of the neural basis of superaging as a model of successful aging.SIGNIFICANCE STATEMENTMemory capacity generally declines with age, but a unique group of older adults – ‘superagers’ – have memory capacities rivaling those of younger adults, as well as preserved neuroanatomy in an ensemble of regions contained in two core intrinsic brain networks – the default mode and salience networks. In this study, we assessed the strength of intrinsic connectivity within these networks in superagers and typical older adults compared to young adults. We also expanded the behavioral assessment of memory. As predicted, superagers have intrinsic connectivity within the default mode and salience networks that is stronger than typical older adults and similar to that of young adults. Within older adults, preserved intrinsic connectivity within each network was uniquely associated with better memory performance.

2019 ◽  
Vol 30 (1) ◽  
pp. 72-84 ◽  
Author(s):  
Jiahe Zhang ◽  
Joseph M Andreano ◽  
Bradford C Dickerson ◽  
Alexandra Touroutoglou ◽  
Lisa Feldman Barrett

Abstract “Superagers” are older adults who, despite their advanced age, maintain youthful memory. Previous morphometry studies revealed multiple default mode network (DMN) and salience network (SN) regions whose cortical thickness is greater in superagers and correlates with memory performance. In this study, we examined the intrinsic functional connectivity within DMN and SN in 41 young (24.5 ± 3.6 years old) and 40 older adults (66.9 ± 5.5 years old). Superaging was defined as youthful performance on a memory recall task, the California Verbal Learning Test (CVLT). Participants underwent a resting-state functional magnetic resonance imaging (fMRI) scan and performed a separate visual–verbal recognition memory task. As predicted, within both DMN and SN, superagers had stronger connectivity compared with typical older adults and similar connectivity compared with young adults. Superagers also performed similarly to young adults and better than typical older adults on the recognition task, demonstrating youthful episodic memory that generalized across memory tasks. Stronger connectivity within each network independently predicted better performance on both the CVLT and recognition task in older adults. Variation in intrinsic connectivity explained unique variance in memory performance, above and beyond youthful neuroanatomy. These results extend our understanding of the neural basis of superaging as a model of successful aging.


2021 ◽  
pp. 1-17
Author(s):  
Junyeon Won ◽  
Daniel D. Callow ◽  
Gabriel S. Pena ◽  
Leslie S. Jordan ◽  
Naomi A. Arnold-Nedimala ◽  
...  

Background: Exercise training (ET) has neuroprotective effects in the hippocampus, a key brain region for memory that is vulnerable to age-related dysfunction. Objective: We investigated the effects of ET on functional connectivity (FC) of the hippocampus in older adults with mild cognitive impairment (MCI) and a cognitively normal (CN) control group. We also assessed whether the ET-induced changes in hippocampal FC (Δhippocampal-FC) are associated with changes in memory task performance (Δmemory performance). Methods: 32 older adults (77.0±7.6 years; 16 MCI and 16 CN) participated in the present study. Cardiorespiratory fitness tests, memory tasks (Rey Auditory Verbal Learning Test (RAVLT) and Logical Memory Test (LM)), and resting-state fMRI were administered before and after a 12-week walking ET intervention. We utilized a seed-based correlation analysis using the bilateral anterior and posterior hippocampi as priori seed regions of interest. The associations of residualized ET-induced Δhippocampal-FC and Δmemory performance were assessed using linear regression. Results: There were significant improvements in RAVLT Trial 1 and LM test performance after ET across participants. At baseline, MCI, compared to CN, demonstrated significantly lower posterior hippocampal FC. ET was associated with increased hippocampal FC across groups. Greater ET-related anterior and posterior hippocampal FC with right posterior cingulate were associated with improved LM recognition performance in MCI participants. Conclusion: Our findings indicate that hippocampal FC is significantly increased following 12-weeks of ET in older adults and, moreover, suggest that increased hippocampal FC may reflect neural network plasticity associated with ET-related improvements in memory performance in individuals diagnosed with MCI.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gianluca Amico ◽  
Sabine Schaefer

Studies examining the effect of embodied cognition have shown that linking one’s body movements to a cognitive task can enhance performance. The current study investigated whether concurrent walking while encoding or recalling spatial information improves working memory performance, and whether 10-year-old children, young adults, or older adults (Mage = 72 years) are affected differently by embodiment. The goal of the Spatial Memory Task was to encode and recall sequences of increasing length by reproducing positions of target fields in the correct order. The nine targets were positioned in a random configuration on a large square carpet (2.5 m × 2.5 m). During encoding and recall, participants either did not move, or they walked into the target fields. In a within-subjects design, all possible combinations of encoding and recall conditions were tested in counterbalanced order. Contrary to our predictions, moving particularly impaired encoding, but also recall. These negative effects were present in all age groups, but older adults’ memory was hampered even more strongly by walking during encoding and recall. Our results indicate that embodiment may not help people to memorize spatial information, but can create a dual-task situation instead.


2008 ◽  
Vol 20 (8) ◽  
pp. 1390-1402 ◽  
Author(s):  
Nancy A. Dennis ◽  
Hongkeun Kim ◽  
Roberto Cabeza

Compared to young adults, older adults show not only a reduction in true memories but also an increase in false memories. We investigated the neural bases of these age effects using functional magnetic resonance imaging and a false memory task that resembles the Deese–Roediger–McDermott (DRM) paradigm. Young and older participants were scanned during a word recognition task that included studied words and new words that were strongly associated with studied words (critical lures). During correct recognition of studied words (true memory), older adults showed weaker activity than young adults in the hippocampus but stronger activity than young adults in the retrosplenial cortex. The hippocampal reduction is consistent with age-related deficits in recollection, whereas the retrosplenial increase suggests compensatory recruitment of alternative recollection-related regions. During incorrect recognition of critical lures (false memory), older adults displayed stronger activity than young adults in the left lateral temporal cortex, a region involved in semantic processing and semantic gist. Taken together, the results suggest that older adults' deficits in true memories reflect a decline in recollection processes mediated by the hippocampus, whereas their increased tendency to have false memories reflects their reliance on semantic gist mediated by the lateral temporal cortex.


2019 ◽  
Vol 30 (3) ◽  
pp. 1291-1306 ◽  
Author(s):  
Brittany Corbett ◽  
M Natasha Rajah ◽  
Audrey Duarte

Abstract Previous studies have only investigated age-related differences in emotional processing and encoding in response to, not in anticipation of, emotional stimuli. In the current study, we investigated age-related differences in the impact of emotional anticipation on affective responses and episodic memory for emotional images. Young and older adults were scanned while encoding negative and neutral images preceded by cues that were either valid or invalid predictors of image valence. Participants were asked to rate the emotional intensity of the images and to complete a recognition task. Using multivariate behavioral partial least squares (PLS) analysis, we found that greater anticipatory recruitment of the amygdala, ventromedial prefrontal cortex (vmPFC), and hippocampus in older adults predicted reduced memory for negative than neutral images and the opposite for young adults. Seed PLS analysis further showed that following negative cues older adults, but not young adults, exhibited greater activation of vmPFC, reduced activation of amygdala, and worse memory for negative compared with neutral images. To the best of our knowledge, this is the first study to provide evidence that the “positivity effect” seen in older adults’ memory performance may be related to the spontaneous emotional suppression of negative affect in anticipation of, not just in response to, negative stimuli.


2009 ◽  
Vol 15 (1) ◽  
pp. 83-93 ◽  
Author(s):  
PATRICIA L. EBERT ◽  
NICOLE D. ANDERSON

AbstractThis study investigated memory interference in amnestic mild cognitive impairment (aMCI) and normal aging. Participants were 27 young adults, 44 healthy older adults, and 15 older adults with aMCI. Memory interference was examined on the California Verbal Learning Test (CVLT) and on a modified AB-AC paradigm. Despite significant differences in memory performance on the CVLT, interference measures on this test did not distinguish individuals with aMCI and healthy older adults. The AB-AC task involved first learning a list (AB list) of 12 semantically related word pairs (e.g., knee-bone). Twenty minutes later, a second list (AC list) was learned in which the same stimulus words were paired with new response words (e.g., knee-bend). Both lists were repeated until 100% accurate recall was achieved. Finally, participants recalled the first (AB) list. Proactive interference (PI) was greater among older than younger adults, and greater still among individuals with aMCI, but the older and aMCI groups showed similar levels of retroactive interference. This study suggests that PI contributes to the memory deficits seen in aMCI and that tests sensitive to PI may assist in the early identification of aMCI. Memory interventions aimed at alleviating PI may improve memory functioning in individuals with aMCI. (JINS, 2009, 15, 83–93.)


GeroPsych ◽  
2016 ◽  
Vol 29 (3) ◽  
pp. 147-154 ◽  
Author(s):  
Isabelle Tournier ◽  
Oliver Jordan ◽  
Dieter Ferring

Abstract. The present study investigated the compensatory impact of motivation to learn on memory performance with age. Twenty-one university undergraduate young adults (M = 22.7, SD = 2.6) and 19 community-dwelling older adults (M = 72.7, SD = 6.6) performed an emotional story memory task with an immediate and delayed recall 7 days later. The emotional content and the age relevance of the stories were manipulated to increase the motivation of older adults to learn. As postulated, results showed no age differences on the recall of positive stories, whereas the recall of negative and neutral stories was lower for older than young adults. In conclusion, motivational aspects may lead to the equivalent memory performance of young and older adults.


2020 ◽  
Author(s):  
Patrick Pruitt ◽  
Lingfei Tang ◽  
Jessica Hayes ◽  
Noa Ofen ◽  
Jessica S. Damoiseaux

Negative subsequent memory effects in functional MRI studies of memory formation, have been linked to individual differences in memory performance, yet the effect of age on this association is currently unclear. To provide insight into the brain systems related to memory across the lifespan, we examined functional neuroimaging data acquired during episodic memory formation and behavioral performance from a memory recognition task in a sample of 109 participants, including three developmental age groups (8-12, 13-17, 18-25 year-olds) and one additional group of older adults (55-85 year-olds). Young adults showed the highest memory performance and strongest negative subsequent memory effects, while older adults showed reduced negative subsequent memory effects relative to young adults. Across the sample, negative subsequent memory effects were associated with better memory performance, and there was a significant interaction between negative subsequent memory effects and memory performance by age groups. Posthoc analyses revealed that this effect was driven by a strong association between negative subsequent memory effects and memory performance in adolescents and young adults, but not in children and older adults. These findings suggest that negative subsequent memory effects may differentially support memory performance across a lifespan trajectory characterized by developmental maturation and age-related deterioration.


2016 ◽  
Vol 28 (6) ◽  
pp. 792-802 ◽  
Author(s):  
Bengi Baran ◽  
Janna Mantua ◽  
Rebecca M. C. Spencer

Consolidation of declarative memories has been associated with slow wave sleep in young adults. Previous work suggests that, in spite of changes in sleep, sleep-dependent consolidation of declarative memories may be preserved with aging, although reduced relative to young adults. Previous work on young adults shows that, with consolidation, retrieval of declarative memories gradually becomes independent of the hippocampus. To investigate whether memories are similarly reorganized over sleep at the neural level, we compared functional brain activation associated with word pair recall following a nap and equivalent wake in young and older adults. SWS during the nap predicted better subsequent memory recall and was negatively associated with retrieval-related hippocampal activation in young adults. In contrast, in older adults there was no relationship between sleep and memory performance or with retrieval-related hippocampal activation. Furthermore, compared with young adults, postnap memory retrieval in older adults required strong functional connectivity of the hippocampus with the PFC, whereas there were no differences between young and older adults in the functional connectivity of the hippocampus following wakefulness. These results suggest that, although neural reorganization takes place over sleep in older adults, the shift is unique from that seen in young adults, perhaps reflecting memories at an earlier stage of stabilization.


2014 ◽  
Vol 28 (3) ◽  
pp. 148-161 ◽  
Author(s):  
David Friedman ◽  
Ray Johnson

A cardinal feature of aging is a decline in episodic memory (EM). Nevertheless, there is evidence that some older adults may be able to “compensate” for failures in recollection-based processing by recruiting brain regions and cognitive processes not normally recruited by the young. We review the evidence suggesting that age-related declines in EM performance and recollection-related brain activity (left-parietal EM effect; LPEM) are due to altered processing at encoding. We describe results from our laboratory on differences in encoding- and retrieval-related activity between young and older adults. We then show that, relative to the young, in older adults brain activity at encoding is reduced over a brain region believed to be crucial for successful semantic elaboration in a 400–1,400-ms interval (left inferior prefrontal cortex, LIPFC; Johnson, Nessler, & Friedman, 2013 ; Nessler, Friedman, Johnson, & Bersick, 2007 ; Nessler, Johnson, Bersick, & Friedman, 2006 ). This reduced brain activity is associated with diminished subsequent recognition-memory performance and the LPEM at retrieval. We provide evidence for this premise by demonstrating that disrupting encoding-related processes during this 400–1,400-ms interval in young adults affords causal support for the hypothesis that the reduction over LIPFC during encoding produces the hallmarks of an age-related EM deficit: normal semantic retrieval at encoding, reduced subsequent episodic recognition accuracy, free recall, and the LPEM. Finally, we show that the reduced LPEM in young adults is associated with “additional” brain activity over similar brain areas as those activated when older adults show deficient retrieval. Hence, rather than supporting the compensation hypothesis, these data are more consistent with the scaffolding hypothesis, in which the recruitment of additional cognitive processes is an adaptive response across the life span in the face of momentary increases in task demand due to poorly-encoded episodic memories.


Sign in / Sign up

Export Citation Format

Share Document