scholarly journals Learning Medical Materials From Radiography Images

2021 ◽  
Vol 4 ◽  
Author(s):  
Carson Molder ◽  
Benjamin Lowe ◽  
Justin Zhan

Deep learning models have been shown to be effective for material analysis, a subfield of computer vision, on natural images. In medicine, deep learning systems have been shown to more accurately analyze radiography images than algorithmic approaches and even experts. However, one major roadblock to applying deep learning-based material analysis on radiography images is a lack of material annotations accompanying image sets. To solve this, we first introduce an automated procedure to augment annotated radiography images into a set of material samples. Next, using a novel Siamese neural network that compares material sample pairs, called D-CNN, we demonstrate how to learn a perceptual distance metric between material categories. This system replicates the actions of human annotators by discovering attributes that encode traits that distinguish materials in radiography images. Finally, we update and apply MAC-CNN, a material recognition neural network, to demonstrate this system on a dataset of knee X-rays and brain MRIs with tumors. Experiments show that this system has strong predictive power on these radiography images, achieving 92.8% accuracy at predicting the material present in a local region of an image. Our system also draws interesting parallels between human perception of natural materials and materials in radiography images.

2021 ◽  
Vol 11 (15) ◽  
pp. 6976
Author(s):  
Miroslav Jaščur ◽  
Marek Bundzel ◽  
Marek Malík ◽  
Anton Dzian ◽  
Norbert Ferenčík ◽  
...  

Certain post-thoracic surgery complications are monitored in a standard manner using methods that employ ionising radiation. A need to automatise the diagnostic procedure has now arisen following the clinical trial of a novel lung ultrasound examination procedure that can replace X-rays. Deep learning was used as a powerful tool for lung ultrasound analysis. We present a novel deep-learning method, automated M-mode classification, to detect the absence of lung sliding motion in lung ultrasound. Automated M-mode classification leverages semantic segmentation to select 2D slices across the temporal dimension of the video recording. These 2D slices are the input for a convolutional neural network, and the output of the neural network indicates the presence or absence of lung sliding in the given time slot. We aggregate the partial predictions over the entire video recording to determine whether the subject has developed post-surgery complications. With a 64-frame version of this architecture, we detected lung sliding on average with a balanced accuracy of 89%, sensitivity of 82%, and specificity of 92%. Automated M-mode classification is suitable for lung sliding detection from clinical lung ultrasound videos. Furthermore, in lung ultrasound videos, we recommend using time windows between 0.53 and 2.13 s for the classification of lung sliding motion followed by aggregation.


2020 ◽  
pp. 74-80
Author(s):  
Philippe Schweizer ◽  

We would like to show the small distance in neutropsophy applications in sciences and humanities, has both finally consider as a terminal user a human. The pace of data production continues to grow, leading to increased needs for efficient storage and transmission. Indeed, the consumption of this information is preferably made on mobile terminals using connections invoiced to the user and having only reduced storage capacities. Deep learning neural networks have recently exceeded the compression rates of algorithmic techniques for text. We believe that they can also significantly challenge classical methods for both audio and visual data (images and videos). To obtain the best physiological compression, i.e. the highest compression ratio because it comes closest to the specificity of human perception, we propose using a neutrosophical representation of the information for the entire compression-decompression cycle. Such a representation consists for each elementary information to add to it a simple neutrosophical number which informs the neural network about its characteristics relative to compression during this treatment. Such a neutrosophical number is in fact a triplet (t,i,f) representing here the belonging of the element to the three constituent components of information in compression; 1° t = the true significant part to be preserved, 2° i = the inderterminated redundant part or noise to be eliminated in compression and 3° f = the false artifacts being produced in the compression process (to be compensated). The complexity of human perception and the subtle niches of its defects that one seeks to exploit requires a detailed and complex mapping that a neural network can produce better than any other algorithmic solution, and networks with deep learning have proven their ability to produce a detailed boundary surface in classifiers.


2021 ◽  
Vol 11 (21) ◽  
pp. 10301
Author(s):  
Muhammad Shoaib Farooq ◽  
Attique Ur Rehman ◽  
Muhammad Idrees ◽  
Muhammad Ahsan Raza ◽  
Jehad Ali ◽  
...  

COVID-19 has been difficult to diagnose and treat at an early stage all over the world. The numbers of patients showing symptoms for COVID-19 have caused medical facilities at hospitals to become unavailable or overcrowded, which is a major challenge. Studies have recently allowed us to determine that COVID-19 can be diagnosed with the aid of chest X-ray images. To combat the COVID-19 outbreak, developing a deep learning (DL) based model for automated COVID-19 diagnosis on chest X-ray is beneficial. In this research, we have proposed a customized convolutional neural network (CNN) model to detect COVID-19 from chest X-ray images. The model is based on nine layers which uses a binary classification method to differentiate between COVID-19 and normal chest X-rays. It provides COVID-19 detection early so the patients can be admitted in a timely fashion. The proposed model was trained and tested on two publicly available datasets. Cross-dataset studies are used to assess the robustness in a real-world context. Six hundred X-ray images were used for training and two hundred X-rays were used for validation of the model. The X-ray images of the dataset were preprocessed to improve the results and visualized for better analysis. The developed algorithm reached 98% precision, recall and f1-score. The cross-dataset studies also demonstrate the resilience of deep learning algorithms in a real-world context with 98.5 percent accuracy. Furthermore, a comparison table was created which shows that our proposed model outperforms other relative models in terms of accuracy. The quick and high-performance of our proposed DL-based customized model identifies COVID-19 patients quickly, which is helpful in controlling the COVID-19 outbreak.


Author(s):  
Himadri Mukherjee ◽  
Subhankar Ghosh ◽  
Ankita Dhar ◽  
Sk. Md. Obaidullah ◽  
KC Santosh ◽  
...  

<div><div><div><p>Among radiological imaging data, chest X-rays are of great use in observing COVID-19 mani- festations. For mass screening, using chest X-rays, a computationally efficient AI-driven tool is the must to detect COVID-19 positive cases from non-COVID ones. For this purpose, we proposed a light-weight Convolutional Neural Network (CNN)-tailored shallow architecture that can automatically detect COVID-19 positive cases using chest X-rays, with no false positive. The shallow CNN-tailored architecture was designed with fewer parameters as compared to other deep learning models, which was validated using 130 COVID-19 positive chest X-rays. In this study, in addition to COVID-19 positive cases, another set of non-COVID-19 cases (exactly similar to the size of COVID-19 set) was taken into account, where MERS, SARS, Pneumonia, and healthy chest X-rays were used. In experimental tests, to avoid possible bias, 5-fold cross validation was followed. Using 260 chest X-rays, the proposed model achieved an accuracy of an accuracy of 96.92%, sensitivity of 0.942, where AUC was 0.9869. Further, the reported false positive rate was 0 for 130 COVID-19 positive cases. This stated that proposed tool could possibly be used for mass screening. Note to be confused, it does not include any clinical implications. Using the exact same set of chest X-rays collection, the current results were better than other deep learning models and state-of-the-art works.</p></div></div></div>


2020 ◽  
Vol 17 (12) ◽  
pp. 5457-5463
Author(s):  
K. Shankar ◽  
Eswaran Perumal

In recent times, COVID-19 has appeared as a major threat to healthcare professionals, governments, and research communities over the world from its diagnosis to medication. Several research works have been carried out for obtaining the possible solutions for controlling the epidemic proficiently. An effective diagnosis of COVID-19 has been carried out using computed tomography (CT) scans and X-rays to examine the lung image. But it necessitates diverse radiologists and time to examine every report, which is a tedious task. Therefore, this paper presents an automated deep learning (DL) based COVID-19 detection and classification model. The presented model performs preprocessing, feature extraction and classification. In the earlier stage, median filtering (MF) technique is applied to preprocess the input image. Next, convolutional neural network (CNN) based VGGNet-19 model is applied as a feature extractor. At last, artificial neural network (ANN) is employed as a classification model to identify and classify the existence of COVID-19. An extensive set of simulation analysis takes place to ensure the superior performance of the applied model. The outcome of the experiments showcased the betterment interms of different measures.


Computation ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 3
Author(s):  
Sima Sarv Ahrabi ◽  
Michele Scarpiniti ◽  
Enzo Baccarelli ◽  
Alireza Momenzadeh

In parallel with the vast medical research on clinical treatment of COVID-19, an important action to have the disease completely under control is to carefully monitor the patients. What the detection of COVID-19 relies on most is the viral tests, however, the study of X-rays is helpful due to the ease of availability. There are various studies that employ Deep Learning (DL) paradigms, aiming at reinforcing the radiography-based recognition of lung infection by COVID-19. In this regard, we make a comparison of the noteworthy approaches devoted to the binary classification of infected images by using DL techniques, then we also propose a variant of a convolutional neural network (CNN) with optimized parameters, which performs very well on a recent dataset of COVID-19. The proposed model’s effectiveness is demonstrated to be of considerable importance due to its uncomplicated design, in contrast to other presented models. In our approach, we randomly put several images of the utilized dataset aside as a hold out set; the model detects most of the COVID-19 X-rays correctly, with an excellent overall accuracy of 99.8%. In addition, the significance of the results obtained by testing different datasets of diverse characteristics (which, more specifically, are not used in the training process) demonstrates the effectiveness of the proposed approach in terms of an accuracy up to 93%.


Author(s):  
Aditya Singh

Abstract: The deadly Covid-19 virus, also known as the Coronavirus has affected the entire world in a short period of time. This pandemic has affected a lot of people in the entire world and caused many deaths. In these difficult times, it is important for the doctors and the medical researchers to differentiate accurately between positive cases and negative cases. This CNN (Convolutional Neural Network) model will allow us to classify X-ray images into positive cases and the normal ones. This dataset is collected from different public sources as well as from some hospitals and physicians. Our goal is to take help from these X- ray images and develop a model where it predicts and classifies the infected cases. Keywords: CNN, Prediction, Classification, Features, Training, Testing, Deep Learning


Author(s):  
Himadri Mukherjee ◽  
Subhankar Ghosh ◽  
Ankita Dhar ◽  
Sk. Md. Obaidullah ◽  
KC Santosh ◽  
...  

<div><div><div><p>Among radiological imaging data, chest X-rays are of great use in observing COVID-19 mani- festations. For mass screening, using chest X-rays, a computationally efficient AI-driven tool is the must to detect COVID-19 positive cases from non-COVID ones. For this purpose, we proposed a light-weight Convolutional Neural Network (CNN)-tailored shallow architecture that can automatically detect COVID-19 positive cases using chest X-rays, with no false positive. The shallow CNN-tailored architecture was designed with fewer parameters as compared to other deep learning models, which was validated using 130 COVID-19 positive chest X-rays. In this study, in addition to COVID-19 positive cases, another set of non-COVID-19 cases (exactly similar to the size of COVID-19 set) was taken into account, where MERS, SARS, Pneumonia, and healthy chest X-rays were used. In experimental tests, to avoid possible bias, 5-fold cross validation was followed. Using 260 chest X-rays, the proposed model achieved an accuracy of an accuracy of 96.92%, sensitivity of 0.942, where AUC was 0.9869. Further, the reported false positive rate was 0 for 130 COVID-19 positive cases. This stated that proposed tool could possibly be used for mass screening. Note to be confused, it does not include any clinical implications. Using the exact same set of chest X-rays collection, the current results were better than other deep learning models and state-of-the-art works.</p></div></div></div>


2021 ◽  
Author(s):  
Debmitra Ghosh

Abstract SARS-CoV-2 or severe acute respiratory syndrome coronavirus 2 is considered to be the cause of Coronavirus (COVID-19) which is a viral disease. The rapid spread of COVID-19 is having a detrimental effect on the global economy and health. A chest X-ray of infected patients can be considered as a crucial step in the battle against COVID-19. On retrospections, it is found that abnormalities exist in chest X-rays of patients suggestive of COVID-19. This sparked the introduction of a variety of deep learning systems and studies which have shown that the accuracy of COVID-19 patient detection through the use of chest X-rays is strongly optimistic. Although there are certain shortcomings like deep learning networks like convolutional neural networks (CNNs) need a substantial amount of training data but the outbreak is recent, so it is large datasets of radiographic images of the COVID-19 infected patients are not available in such a short time. Here, in this research, we present a method to generate synthetic chest X-ray (CXR) images by developing a Deep Convolution Generative Adversarial Network-based model. In addition, we demonstrate that the synthetic images produced from DCGAN can be utilized to enhance the performance of CNN for COVID-19 detection. Classification using CNN alone yielded 85% accuracy. Although there are several models available, we chose MobileNet as it is a lightweight deep neural network, with fewer parameters and higher classification accuracy. Here we are using a deep neural network-based model to diagnose COVID-19 infected patients through radiological imaging of 5,859 Chest X-Ray images. We are using a Deep Convolutional Neural Network and a pre-trained model “DenseNet 121” for two new label classes (COVID-19 and Normal). To improve the classification accuracy, in our work we have further reduced the number of network parameters by introducing dense blocks that are proposed in DenseNets into MobileNet. By adding synthetic images produced by DCGAN, the accuracy increased to 97%. Our goal is to use this method to speed up COVID-19 detection and lead to more robust systems of radiology.


Author(s):  
R. Rohith ◽  
S.P.Syed Ibrahim

Tuberculosis is a life-threatening disease that mainly affects underdeveloped as well as developing nations. While lethal it is often resistive to antibiotics and the safest way to treat a patient is to detect the disease's presence as soon as possible. Various techniques have been developed to diagnose tuberculosis and radiography of the chest is one of such methods that works well for over a decade.. Though an effective method still the success depends on the medical officer who examines the chest X-rays. Thus ,this paper proposes an approach for detecting X-ray abnormalities using deep learning. The systems output is assessed on two open Montgomery and Shenz en chest X-ray datasets and accuracy of 84 percent is achieved.


Sign in / Sign up

Export Citation Format

Share Document