scholarly journals Augmented Reality Meets Artificial Intelligence in Robotics: A Systematic Review

2021 ◽  
Vol 8 ◽  
Author(s):  
Zahraa Bassyouni ◽  
Imad H. Elhajj

Recently, advancements in computational machinery have facilitated the integration of artificial intelligence (AI) to almost every field and industry. This fast-paced development in AI and sensing technologies have stirred an evolution in the realm of robotics. Concurrently, augmented reality (AR) applications are providing solutions to a myriad of robotics applications, such as demystifying robot motion intent and supporting intuitive control and feedback. In this paper, research papers combining the potentials of AI and AR in robotics over the last decade are presented and systematically reviewed. Four sources for data collection were utilized: Google Scholar, Scopus database, the International Conference on Robotics and Automation 2020 proceedings, and the references and citations of all identified papers. A total of 29 papers were analyzed from two perspectives: a theme-based perspective showcasing the relation between AR and AI, and an application-based analysis highlighting how the robotics application was affected. These two sections are further categorized based on the type of robotics platform and the type of robotics application, respectively. We analyze the work done and highlight some of the prevailing limitations hindering the field. Results also explain how AR and AI can be combined to solve the model-mismatch paradigm by creating a closed feedback loop between the user and the robot. This forms a solid base for increasing the efficiency of the robotic application and enhancing the user’s situational awareness, safety, and acceptance of AI robots. Our findings affirm the promising future for robust integration of AR and AI in numerous robotic applications.

Author(s):  
Mehreen Sirshar ◽  
Syeda Hafsa Ali ◽  
Haleema Sadia Baig

Over the last few decades there has been an exponential growth in IT, motivating IT professionals and scientists to explore new dimensions resulting in the advancement of artificial intelligence and its subcategories like computer vision, deep learning and augmented reality. AR is comparatively a new area which was initially explored for gaming but recently a lot of work has been done in education using AR. Most of this focuses on improving students understanding and motivation. Like any other project, the performance of an AR based project is determined by the customer satisfaction which is usually affected by the theory of triple constraints; cost, time and scope. many studies have shown that most of the projects are under development because they are unable to overcome these constraints and meet project objectives. We were unable to find any notable work done regarding project management for augmented reality systems and application. Therefore, in this paper, we propose a system for management of AR applications which mainly focuses on catering triple constraints to meet desired objectives. Each variable is further divided into subprocesses and by following these processes successful completion of the project can be achieved.


2021 ◽  
Vol 1 ◽  
pp. 87
Author(s):  
Konstantinos C. Apostolakis ◽  
Nikolaos Dimitriou ◽  
George Margetis ◽  
Stavroula Ntoa ◽  
Dimitrios Tzovaras ◽  
...  

Background: Augmented reality (AR) and artificial intelligence (AI) are highly disruptive technologies that have revolutionised practices in a wide range of domains. Their potential has not gone unnoticed in the security sector with several law enforcement agencies (LEAs) employing AI applications in their daily operations for forensics and surveillance. In this paper, we present the DARLENE ecosystem, which aims to bridge existing gaps in applying AR and AI technologies for rapid tactical decision-making in situ with minimal error margin, thus enhancing LEAs’ efficiency and Situational Awareness (SA). Methods: DARLENE incorporates novel AI techniques for computer vision tasks such as activity recognition and pose estimation, while also building an AR framework for visualization of the inferenced results via dynamic content adaptation according to each individual officer’s stress level and current context. The concept has been validated with end-users through co-creation workshops, while the decision-making mechanism for enhancing LEAs’ SA has been assessed with experts. Regarding computer vision components, preliminary tests of the instance segmentation method for humans’ and objects’ detection have been conducted on a subset of videos from the RWF-2000 dataset for violence detection, which have also been used to test a human pose estimation method that has so far exhibited impressive results and will constitute the basis of further developments in DARLENE. Results: Evaluation results highlight that target users are positive towards the adoption of the proposed solution in field operations, and that the SA decision-making mechanism produces highly acceptable outcomes. Evaluation of the computer vision components yielded promising results and identified opportunities for improvement. Conclusions: This work provides the context of the DARLENE ecosystem and presents the DARLENE architecture, analyses its individual technologies, and demonstrates preliminary results, which are positive both in terms of technological achievements and user acceptance of the proposed solution.


2021 ◽  
Vol 11 (3) ◽  
pp. 1150
Author(s):  
Stephan Werner ◽  
Florian Klein ◽  
Annika Neidhardt ◽  
Ulrike Sloma ◽  
Christian Schneiderwind ◽  
...  

For a spatial audio reproduction in the context of augmented reality, a position-dynamic binaural synthesis system can be used to synthesize the ear signals for a moving listener. The goal is the fusion of the auditory perception of the virtual audio objects with the real listening environment. Such a system has several components, each of which help to enable a plausible auditory simulation. For each possible position of the listener in the room, a set of binaural room impulse responses (BRIRs) congruent with the expected auditory environment is required to avoid room divergence effects. Adequate and efficient approaches are methods to synthesize new BRIRs using very few measurements of the listening room. The required spatial resolution of the BRIR positions can be estimated by spatial auditory perception thresholds. Retrieving and processing the tracking data of the listener’s head-pose and position as well as convolving BRIRs with an audio signal needs to be done in real-time. This contribution presents work done by the authors including several technical components of such a system in detail. It shows how the single components are affected by psychoacoustics. Furthermore, the paper also discusses the perceptive effect by means of listening tests demonstrating the appropriateness of the approaches.


2021 ◽  
Vol 11 (7) ◽  
pp. 3253
Author(s):  
Umile Giuseppe Longo ◽  
Sergio De Salvatore ◽  
Vincenzo Candela ◽  
Giuliano Zollo ◽  
Giovanni Calabrese ◽  
...  

Background: The application of virtual and augmented reality technologies to orthopaedic surgery training and practice aims to increase the safety and accuracy of procedures and reducing complications and costs. The purpose of this systematic review is to summarise the present literature on this topic while providing a detailed analysis of current flaws and benefits. Methods: A comprehensive search on the PubMed, Cochrane, CINAHL, and Embase database was conducted from inception to February 2021. The Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines were used to improve the reporting of the review. The Cochrane Risk of Bias Tool and the Methodological Index for Non-Randomized Studies (MINORS) was used to assess the quality and potential bias of the included randomized and non-randomized control trials, respectively. Results: Virtual reality has been proven revolutionary for both resident training and preoperative planning. Thanks to augmented reality, orthopaedic surgeons could carry out procedures faster and more accurately, improving overall safety. Artificial intelligence (AI) is a promising technology with limitless potential, but, nowadays, its use in orthopaedic surgery is limited to preoperative diagnosis. Conclusions: Extended reality technologies have the potential to reform orthopaedic training and practice, providing an opportunity for unidirectional growth towards a patient-centred approach.


Author(s):  
I. Murph ◽  
M. McDonald ◽  
K. Richardson ◽  
M. Wilkinson ◽  
S. Robertson ◽  
...  

Within distracting environments, it is difficult to maintain attentional focus on complex tasks. Cognitive aids can support attention by adding relevant information to the environment, such as via augmented reality (AR). However, there may be a benefit in removing elements from the environment, such as irrelevant alarms, displays, and conversations. De-emphasis of distracting elements is a type of AR called Diminished Reality (DR). Although de-emphasizing distraction may help focus on a primary task, it may also reduce situational awareness (SA) of other activities that may become relevant. In the current study, participants will assemble a medical ventilator during a simulated emergency while experiencing varying levels of DR. Participants will also be probed to assess secondary SA. We anticipate that participants will have better accuracy and completion times in the full DR conditions but their SA will suffer. Future applications include the design of future DR systems and improved training methods.


2021 ◽  
pp. 49-52
Author(s):  
Gaurvi Vikram Kamra ◽  
Ankur Sharma

The concept of "articial intelligence" (AI) refers to machines that are capable of executing human-like tasks. AI can also be dened as a eld concerned with computational models that can reason and act intelligently. Perspicacious software for data computation has become a necessity as the amount of documented information and patient data has increased dramatically. The applicability, limitations, and potential future of AI-based dental diagnoses, treatment planning, and conduct are described in this concise narrative overview. AI has been used in a variety of ways, from processing of data and locating relevant information to using neural networks for diagnosis and the introduction of augmented reality and virtual reality in dental education. AI-based apps will improve patient care by relieving the dental workforce of tedious routine duties, improving population health at lower costs, and eventually facilitating individualized, anticipatory, prophylactic, and collaborative dentistry. The convergence of AI and digitization has ushered in a new age in dentistry, with tremendously promising future prospects.The applicability, limitations, and potential future of AI-based dental diagnoses, treatment planning, and conduct are described in this concise narrative overview.


2021 ◽  
Author(s):  
Benjamin Sho ◽  
Ryan Anthony De Belen ◽  
Rowan T Hughes ◽  
Tomasz Bednarz

Sign in / Sign up

Export Citation Format

Share Document