scholarly journals On the Mathematical Modeling of Slender Biomedical Continuum Robots

2021 ◽  
Vol 8 ◽  
Author(s):  
Hunter B. Gilbert

The passive, mechanical adaptation of slender, deformable robots to their environment, whether the robot be made of hard materials or soft ones, makes them desirable as tools for medical procedures. Their reduced physical compliance can provide a form of embodied intelligence that allows the natural dynamics of interaction between the robot and its environment to guide the evolution of the combined robot-environment system. To design these systems, the problems of analysis, design optimization, control, and motion planning remain of great importance because, in general, the advantages afforded by increased mechanical compliance must be balanced against penalties such as slower dynamics, increased difficulty in the design of control systems, and greater kinematic uncertainty. The models that form the basis of these problems should be reasonably accurate yet not prohibitively expensive to formulate and solve. In this article, the state-of-the-art modeling techniques for continuum robots are reviewed and cast in a common language. Classical theories of mechanics are used to outline formal guidelines for the selection of appropriate degrees of freedom in models of continuum robots, both in terms of number and of quality, for geometrically nonlinear models built from the general family of one-dimensional rod models of continuum mechanics. Consideration is also given to the variety of actuators found in existing designs, the types of interaction that occur between continuum robots and their biomedical environments, the imposition of constraints on degrees of freedom, and to the numerical solution of the family of models under study. Finally, some open problems of modeling are discussed and future challenges are identified.

Author(s):  
George Valsamos ◽  
Christos Theodosiou ◽  
Sotirios Natsiavas

Dynamic response related to fatigue prediction of an urban bus is investigated. First, a quite complete model subjected to road excitation is employed in order to extract sufficiently reliable and accurate information in a fast way. The bus model is set up by applying the finite element method, resulting to an excessive number of degrees of freedom. In addition, the bus suspension units involve nonlinear characterstics. A step towards alleviating this difficulty is the application of an appropriate coordinate transformation, causing a drastic reduction in the dimension of the final set of the equations of motion. This allows the application of a systematic numerical methodology leading to direct determination of periodic steady state response of nonlinear models subjected to periodic excitation. Next, typical results were obtained for excitation resulting from selected urban road profiles. These profiles have either a known form or known statistical properties, expressed by an appropriate spatial power spectral density function. In all cases examined, the emphasis was put on investigating ride response. The main attention was focused on identifying areas of the bus suspension and frame subsystems where high stress levels are developed. This information is based on the idea of a nonlinear transfer function and provides the basis for applying suitable criteria in order to perform analyses leading to prediction of fatigue failure.


Robotica ◽  
1986 ◽  
Vol 4 (4) ◽  
pp. 263-267 ◽  
Author(s):  
Ronald L. Huston ◽  
Timothy P. King

SUMMARYThe dynamics of “simple, redundant robots” are developed. A “redundant” robot is a robot whose degrees of freedom are greater than those needed to perform a given kinetmatic task. A “simple” robot is a robot with all joints being revolute joints with axes perpendicular or parallel to the arm segments. A general formulation, and a solution algorithm, for the “inverse kinematics problem” for such systems, is presented. The solution is obtained using orthogonal complement arrays which in turn are obtained from a “zero-eigenvalues” algorithm. The paper concludes with an assertion that this solution, called the “natural dynamics solution,” is optimal in that it requires the least energy to drive the robot.


Author(s):  
Martin Schulze ◽  
Stefan Dietz ◽  
Bernhard Burgermeister ◽  
Andrey Tuganov ◽  
Holger Lang ◽  
...  

Current challenges in industrial multibody system simulation are often beyond the classical range of application of existing industrial simulation tools. The present paper describes an extension of a recursive order-n multibody system (MBS) formulation to nonlinear models of flexible deformation that are of particular interest in the dynamical simulation of wind turbines. The floating frame of reference representation of flexible bodies is generalized to nonlinear structural models by a straightforward transformation of the equations of motion (EoM). The approach is discussed in detail for the integration of a recently developed discrete Cosserat rod model representing beamlike flexible structures into a general purpose MBS software package. For an efficient static and dynamic simulation, the solvers of the MBS software are adapted to the resulting class of MBS models that are characterized by a large number of degrees of freedom, stiffness, and high frequency components. As a practical example, the run-up of a simplified three-bladed wind turbine is studied where the dynamic deformations of the three blades are calculated by the Cosserat rod model.


Robotica ◽  
2001 ◽  
Vol 19 (3) ◽  
pp. 275-284 ◽  
Author(s):  
M. Wisse ◽  
A. L. Schwab ◽  
R. Q. vd. Linde

Autonomous walking bipedal machines, possibly useful for rehabilitation and entertainment purposes, need a high energy efficiency, offered by the concept of ‘Passive Dynamic Walking' (exploitation of the natural dynamics of the robot). 2D passive dynamic bipeds have been shown to be inherently stable, but in the third dimension two problematic degrees of freedom are introduced: yaw and roll.We propose a design for a 3D biped with a pelvic body as a passive dynamic compensator, which will compensate for the undesired yaw and roll motion, and allow the rest of the robot to move as if it were a 2D machine. To test our design, we perform numerical simulations on a multibody model of the robot. With limit cycle analysis we calculate the stability of the robot when walking at its natural speed.The simulation shows that the compensator, indeed, effectively compensates for both the yaw and the roll motion, and that the walker is stable.


2009 ◽  
Vol 2 (1) ◽  
Author(s):  
Kai Xu ◽  
Nabil Simaan

This paper presents a novel and unified analytic formulation for kinematics, statics, and shape restoration of multiple-backbone continuum robots. These robots achieve actuation redundancy by independently pulling and pushing three backbones to carry out a bending motion of two-degrees-of-freedom (DoF). A solution framework based on constraints of geometric compatibility and static equilibrium is derived using elliptic integrals. This framework allows the investigation of the effects of different external loads and actuation redundancy resolutions on the shape variations in these continuum robots. The simulation and experimental validation results show that these continuum robots bend into an exact circular shape for one particular actuation resolution. This provides a proof to the ubiquitously accepted circular-shape assumption in deriving kinematics for continuum robots. The shape variations due to various actuation redundancy resolutions are also investigated. The simulation results show that these continuum robots have the ability to redistribute loads among their backbones without introducing significant shape variations. A strategy for partially restoring the shape of the externally loaded continuum robots is proposed. The simulation results show that either the tip orientation or the tip position can be successfully restored.


Author(s):  
Alexey Bolsinov ◽  
Vladimir S. Matveev ◽  
Eva Miranda ◽  
Serge Tabachnikov

The paper surveys open problems and questions related to different aspects of integrable systems with finitely many degrees of freedom. Many of the open problems were suggested by the participants of the conference ‘Finite-dimensional Integrable Systems, FDIS 2017’ held at CRM, Barcelona in July 2017. This article is part of the theme issue ‘Finite dimensional integrable systems: new trends and methods’.


2020 ◽  
pp. 1-11 ◽  
Author(s):  
Xinbo Chen ◽  
Jiantao Yao ◽  
Tong Li ◽  
Haili Li ◽  
Pan Zhou ◽  
...  

Abstract Cable-driven continuum robots exhibit excellent capabilities in the unstructured environment due to their inherent compliance and dexterity. To improve the reliability and load capacity of continuum robots, increasing the number of cables is often used in the control of continuum robots. However, the number of actuators will increase with the cables. To tackle this challenge, this work proposes a method for increasing the number of cables without increasing actuators in a continuum robot through parallel platforms. The parallel platforms are used to control all the cables in the continuum robot, and can be separated from the continuum robot to enable the remote drive of a manipulation arm by using the cable-tube structure. The manipulation arm is composed of several independent bending modules in series, which can be configured freely according to the demand of degrees of freedom. Further, each bending module is controlled independently by a parallel platform, which can avoid the mutual interference between the cables of one bending module and another one, improve the position accuracy and simplify the control difficulty of the manipulation arm. To evaluate the proposed method, this work develops a prototype of six-cable-driven continuum robot controlled by 3RPS parallel platforms, and presents some basic kinematic models to describe its function, and then an experimental work characterizing its performance. Experimental results illustrated the importance of increasing the number of cables, the rationality of kinematic models of the continuum robot, and the feasibility of controlling multiple cables by a parallel platform.


Robotics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 4 ◽  
Author(s):  
Sarthak Bhagat ◽  
Hritwick Banerjee ◽  
Zion Ho Tse ◽  
Hongliang Ren

The increasing trend of studying the innate softness of robotic structures and amalgamating it with the benefits of the extensive developments in the field of embodied intelligence has led to the sprouting of a relatively new yet rewarding sphere of technology in intelligent soft robotics. The fusion of deep reinforcement algorithms with soft bio-inspired structures positively directs to a fruitful prospect of designing completely self-sufficient agents that are capable of learning from observations collected from their environment. For soft robotic structures possessing countless degrees of freedom, it is at times not convenient to formulate mathematical models necessary for training a deep reinforcement learning (DRL) agent. Deploying current imitation learning algorithms on soft robotic systems has provided competent results. This review article posits an overview of various such algorithms along with instances of being applied to real-world scenarios, yielding frontier results. Brief descriptions highlight the various pristine branches of DRL research in soft robotics.


2019 ◽  
Vol 59 (5) ◽  
pp. 458-466
Author(s):  
Lukáš Koska ◽  
Slávka Jadlovská ◽  
Dominik Vošček ◽  
Anna Jadlovská

Research in the field of underactuated systems shows that control algorithms which take the natural dynamics of the system’s underactuated part into account are more energy-efficient than those utilizing fully-actuated systems. The purpose of this paper to apply the two-degrees-of-freedom (feedforward/feedback) control structure to design a swing-up manoeuver that involves tracking the desired trajectories so as to achieve and maintain the unstable equilibrium position of the pendulum on the cart system. The desired trajectories are obtained by solving the boundary value problem of the internal system dynamics, while the optimal state-feedback controller ensures that the desired trajectory is tracked with minimal deviations. The proposed algorithm is verified on the simulation model of the available laboratory model actuated by a linear synchronous motor, and the resulting program implementation is used to enhance the custom Simulink library Inverted Pendula Modeling and Control, developed by the authors of this paper.


Author(s):  
Hyun-Soo Yoon ◽  
Byung-Ju Yi

Few interface systems designed to control continuum robots have been developed. This work presents a master device for multi-unit continuum robots. The master mechanism has the same kinematic structure as the slave device. The kinematic structure, which uses a spring as a backbone, allows for a unique forward kinematic solution. This design is slim-sized, light-weight, and easy to implement. As an example mechanism, a continuum unit with two degrees of freedom was developed. Two-unit modules were assembled to generate four degrees of freedom. The performance of the master device is verified through a master-slave control experiment.


Sign in / Sign up

Export Citation Format

Share Document