scholarly journals De novo Transcriptome Assembly of Myllocerinus aurolineatus Voss in Tea Plants

2021 ◽  
Vol 5 ◽  
Author(s):  
Xin Xie ◽  
Junmei Jiang ◽  
Meiqing Chen ◽  
Maoxi Huang ◽  
Linhong Jin ◽  
...  

Myllocerinus aurolineatus Voss is a species of the insecta class in the arthropod. In this study, we first observed and identified M. aurolineatus Voss in tea plants in Guizhou, China, where it caused severe quantity and quality losses in tea plants. Knowledge on M. aurolineatus Voss genome is inadequate, especially for biological or functional research. We performed the first transcriptome sequencing by using the Illumina Hiseq™ technique on M. aurolineatus Voss. Over 55.9 million high-quality paired-end reads were generated and assembled into 69,439 unigenes using the Trinity short read software, resulting in a cluster of 1,207 bp of the N50 length. A total of 69,439 genes were predicted by BLAST to known proteins in the NCBI database and were distributed into Gene Ontology (20,190), eukaryotic complete genomes (12,488), and the Kyoto Encyclopedia of Genes and Genomes (3,170). We also identified 96,790 single-nucleotide polymorphisms and 13,121 simple sequence repeats in these unigenes. Our transcriptome data provide a useful resource for future functional studies of M. aurolineatus Voss for dispersal control in tea plants.

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1386
Author(s):  
Soyun Kim ◽  
Keunho Yun ◽  
Han Yong Park ◽  
Ju Young Ahn ◽  
Ju Yeon Yang ◽  
...  

Red radish (Raphanus sativus L.) cultivars are a rich source of health-promoting anthocyanins and are considered a potential source of natural colorants used in the cosmetic industry. However, the development of red radish cultivars via conventional breeding is very difficult, given the unusual inheritance of the anthocyanin accumulation trait in radishes. Therefore, molecular markers linked with radish color are needed to facilitate radish breeding. Here, we characterized the RsTT8 gene isolated from four radish genotypes with different skin and flesh colors. Sequence analysis of RsTT8 revealed a large number of polymorphisms, including insertion/deletions (InDels), single nucleotide polymorphisms (SNPs), and simple sequence repeats (SSRs), between the red-fleshed and white-fleshed radish cultivars. To develop molecular markers on the basis of these polymorphisms for discriminating between radish genotypes with different colored flesh tissues, we designed four primer sets specific to the RsTT8 promoter, InDel, SSR, and WD40/acidic domain (WD/AD), and tested these primers on a diverse collection of radish lines. Except for the SSR-specific primer set, all primer sets successfully discriminated between red-fleshed and white-fleshed radish lines. Thus, we developed three molecular markers that can be efficiently used for breeding red-fleshed radish cultivars.


2014 ◽  
Vol 12 (S1) ◽  
pp. S83-S86 ◽  
Author(s):  
Yul-Kyun Ahn ◽  
Swati Tripathi ◽  
Young-Il Cho ◽  
Jeong-Ho Kim ◽  
Hye-Eun Lee ◽  
...  

Next-generation sequencing technique has been known as a useful tool for de novo transcriptome assembly, functional annotation of genes and identification of molecular markers. This study was carried out to mine molecular markers from de novo assembled transcriptomes of four chilli pepper varieties, the highly pungent ‘Saengryeg 211’ and non-pungent ‘Saengryeg 213’ and variably pigmented ‘Mandarin’ and ‘Blackcluster’. Pyrosequencing of the complementary DNA library resulted in 361,671, 274,269, 279,221, and 316,357 raw reads, which were assembled in 23,607, 19,894, 18,340 and 20,357 contigs, for the four varieties, respectively. Detailed sequence variant analysis identified numerous potential single-nucleotide polymorphisms (SNPs) and simple sequence repeats (SSRs) for all the varieties for which the primers were designed. The transcriptome information and SNP/SSR markers generated in this study provide valuable resources for high-density molecular genetic mapping in chilli pepper and Quantitative trait loci analysis related to fruit qualities. These markers for pepper will be highly valuable for marker-assisted breeding and other genetic studies.


Author(s):  
Boyun Yang ◽  
Huolin Luo ◽  
Yuan Tao ◽  
Wenjing Yu ◽  
Liping Luo

Cymbidium kanran is an important commercially grown member of the Chinese orchid family. However, little information regarding the molecular biology of this species is available. In this study, the C. kanran root, shoot, stem, leaf, and flower transcriptomes were sequenced with the Illumina HiSeq 4000 system, which resulted in 8.9 Gb of clean reads that were assembled into 74,620 unigenes, with an average length and N50 of 983 bp and 1,640 bp, respectively. The screening of seven databases (NR, NT, GO, KOG, KEGG, Swiss-Prot, and InterPro) for similar sequences resulted in the functional annotation of 49,813 unigenes. Additionally, 173 MADS-box genes, which help to control major aspects of plant development, were identified and their codon usage bias was analyzed. Only 26 genes had a low ENC (less than or equal to 35), suggesting the codon usage bias was weak. Base mutations were the major determinants of codon usage, although natural selection pressure also influenced codon usage bias. Moreover, 22 optimal codons were identified based on ΔRSCU, and 20 codons ended with A/U. The results of this study provide the foundation for the molecular breeding of new varieties


Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 101
Author(s):  
Miao Wang ◽  
Hanyu Li ◽  
Huoqing Zheng ◽  
Liuwei Zhao ◽  
Xiaofeng Xue ◽  
...  

The invasion of Vespa velutina presents a great threat to the agriculture economy, the ecological environment, and human health. An effective strategy for this hornet control is urgently required, but the limited genome information of Vespa velutina restricts the application of molecular-genomic tools for targeted hornet management. Therefore, we conducted large-scale transcriptome profiling of the hornet brain to obtain functional target genes and molecular markers. Using an Illumina HiSeq platform, more than 41 million clean reads were obtained and de novo assembled into 182,087 meaningful unigenes. A total of 56,400 unigenes were annotated against publicly available protein sequence databases and a set of reliable Simple Sequence Repeats (SSRs) and Single Nucleotide Polymorphisms (SNP) markers were developed. The homologous genes encoding crucial behavior regulation factors, odorant binding proteins (OBPs), and vitellogenin, were also identified from highly expressed transcripts. This study provides abundant molecular targets and markers for invasive hornet control and further promotes the genetic and molecular study of Vespa velutina.


2018 ◽  
Vol 5 (12) ◽  
pp. 181247 ◽  
Author(s):  
Tengfei Liu ◽  
Ziyao Liu ◽  
Xueyan Yao ◽  
Ying Huang ◽  
Qingsong Qu ◽  
...  

Cordyceps cicadae (Chanhua) is a parasitic fungus that grows on Cicada flammata larvae and is used to relieve exhaustion and treat numerous diseases, in part through its active constituent, cordycepin. We used de novo Illumina HiSeq 4000 sequencing to obtain transcriptomes of C. cicadae mycelium, fruiting body, and sclerotium, and identify differentially expressed genes. In the mycelium versus sclerotium libraries, 1576 upregulated and 2300 downregulated genes were identified. In the mycelium versus fruiting body and fruiting body versus sclerotium body libraries, 1604 and 1474 upregulated and 1365 and 1320 downregulated genes, respectively, were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses identified 19 genes differentially expressed in mycelium versus fruiting body as related to the purine pathway, along with 28 and 16 genes differentially expressed in the mycelium versus sclerotium and fruiting body versus sclerotium groups, respectively. Gene expression of six key enzymes was validated by quantitative polymerase chain reaction. Specifically, 5′-nucleotidase (c62060g1) and adenosine deaminase (c35629g1) in purine nucleotide metabolism, which are involved in cordycepin biosynthesis, were significantly upregulated in the sclerotium group. These findings improved our understanding of genes involved in the biosynthesis of cordycepin and other characteristic secondary metabolites in C. cicadae .


2015 ◽  
Vol 53 (10) ◽  
pp. 3141-3147 ◽  
Author(s):  
M. D. Cairns ◽  
M. D. Preston ◽  
T. D. Lawley ◽  
T. G. Clark ◽  
R. A. Stabler ◽  
...  

Clostridium difficileremains the leading cause of nosocomial diarrhea worldwide, which is largely considered to be due to the production of two potent toxins: TcdA and TcdB. However, PCR ribotype (RT) 017, one of five clonal lineages of human virulentC. difficile, lacks TcdA expression but causes widespread disease. Whole-genome sequencing was applied to 35 isolates from hospitalized patients withC. difficileinfection (CDI) and two environmental ward isolates in London, England. The phylogenetic analysis of single nucleotide polymorphisms (SNPs) revealed a clonal cluster of temporally variable isolates from a single hospital ward at University Hospital Lewisham (UHL) that were distinct from other London hospital isolates.De novoassembled genomes revealed a 49-kbp putative conjugative transposon exclusive to this hospital clonal cluster which would not be revealed by current typing methodologies. This study identified three sublineages ofC. difficileRT017 that are circulating in London. Similar to the notorious RT027 lineage, which has caused global outbreaks of CDI since 2001, the lineage of toxin-defective RT017 strains appears to be continually evolving. By utilization of WGS technologies to identify SNPs and the evolution of clonal strains, the transmission of outbreaks caused by near-identical isolates can be retraced and identified.


Sign in / Sign up

Export Citation Format

Share Document