scholarly journals Development of Molecular Markers for Predicting Radish (Raphanus sativus) Flesh Color Based on Polymorphisms in the RsTT8 Gene

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1386
Author(s):  
Soyun Kim ◽  
Keunho Yun ◽  
Han Yong Park ◽  
Ju Young Ahn ◽  
Ju Yeon Yang ◽  
...  

Red radish (Raphanus sativus L.) cultivars are a rich source of health-promoting anthocyanins and are considered a potential source of natural colorants used in the cosmetic industry. However, the development of red radish cultivars via conventional breeding is very difficult, given the unusual inheritance of the anthocyanin accumulation trait in radishes. Therefore, molecular markers linked with radish color are needed to facilitate radish breeding. Here, we characterized the RsTT8 gene isolated from four radish genotypes with different skin and flesh colors. Sequence analysis of RsTT8 revealed a large number of polymorphisms, including insertion/deletions (InDels), single nucleotide polymorphisms (SNPs), and simple sequence repeats (SSRs), between the red-fleshed and white-fleshed radish cultivars. To develop molecular markers on the basis of these polymorphisms for discriminating between radish genotypes with different colored flesh tissues, we designed four primer sets specific to the RsTT8 promoter, InDel, SSR, and WD40/acidic domain (WD/AD), and tested these primers on a diverse collection of radish lines. Except for the SSR-specific primer set, all primer sets successfully discriminated between red-fleshed and white-fleshed radish lines. Thus, we developed three molecular markers that can be efficiently used for breeding red-fleshed radish cultivars.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yanqin Xu ◽  
Shuyun Tian ◽  
Renqing Li ◽  
Xiaofang Huang ◽  
Fengqin Li ◽  
...  

Sarcandra glabra has significant metabolically active bioingredients of pharmaceutical importance. The deficiency of molecular markers for S. glabra is a hindrance in molecular breeding for genetic improvement. In this study, 57.756 million pair-end reads were generated by transcriptome sequencing in S. glabra (Thunb.) Nakai and its subspecies S. glabra ssp. brachystachys. A total of 141,954 unigenes with 646.63 bp average length were assembled. A total of 25,620 simple sequence repeats, 726,476 single nucleotide polymorphisms, and 42,939 insertions and deletions were identified, and the associated unigenes and differentially expressed genes were characterized. This work enhanced the molecular marker resources and will facilitate molecular breeding and gene mining in S. glabra spp.


2016 ◽  
Vol 141 (1) ◽  
pp. 62-65 ◽  
Author(s):  
Michael J. Havey ◽  
Yul-Kyun Ahn

Garlic (Allium sativum) is cultivated worldwide and appreciated for its culinary uses. In spite of primarily being asexually propagated, garlic shows great morphological variation and adaptability to diverse production environments. Molecular markers and phenotypic characteristics have been used to assess the genetic diversity among garlics. In this study, we undertook transcriptome sequencing from a single garlic plant to identify molecular markers in expressed regions of the garlic genome. Garlic sequences were assembled and selected if they were similar to monomorphic sequences from a doubled haploid (DH) of onion (Allium cepa). Single nucleotide polymorphisms (SNPs) and insertion–deletion (indel) events were identified in 4355 independent garlic assemblies. A sample of the indels was verified using the original complementary DNA (cDNA) library and genomics DNAs from diverse garlics, and segregations confirmed by sexual progenies of garlic. These molecular markers from the garlic transcriptome should be useful for estimates of genetic diversity, identification and removal of duplicate accessions from germplasm collections, and the development of a detailed genetic map of this important vegetable crop.


Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 583
Author(s):  
Mostari Jahan Ferdous ◽  
Mohammad Rashed Hossain ◽  
Jong-In Park ◽  
Arif Hasan Khan Robin ◽  
Denison Michael Immanuel Jesse ◽  
...  

The inheritance and causal loci for resistance to blackleg, a devastating disease of Brassicaceous crops, are yet to be known in cabbage (Brassica oleracea L.). Here, we report the pattern of inheritance and linked molecular marker for this trait. A segregating BC1 population consisting of 253 plants was raised from resistant and susceptible parents, L29 (♀) and L16 (♂), respectively. Cotyledon resistance bioassay of BC1 population, measured based on a scale of 0–9 at 12 days after inoculation with Leptosphaeria maculans isolate 03–02 s, revealed the segregation of resistance and ratio, indicative of dominant monogenic control of the trait. Investigation of potential polymorphism in the previously identified differentially expressed genes within the collinear region of ‘B. napus blackleg resistant loci Rlm1′ in B. oleracea identified two insertion/deletion (InDel) mutations in the intron and numerous single nucleotide polymorphisms (SNPs) throughout the LRR-RLK gene Bol040029, of which six SNPs in the first exon caused the loss of two LRR domains in the susceptible line. An InDel marker, BLR-C-InDel based on the InDel mutations, and a high resolution melting (HRM) marker, BLR-C-2808 based on the SNP C2808T in the second exon were developed, which predicated the resistance status of the BC1 population with 80.24%, and of 24 commercial inbred lines with 100% detection accuracy. This is the first report of inheritance and molecular markers linked with blackleg resistance in cabbage. This study will enhance our understanding of the trait, and will be helpful in marker assisted breeding aiming at developing resistant cabbage varieties.


Animals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 858 ◽  
Author(s):  
Wang ◽  
Li ◽  
Zhou ◽  
Gao ◽  
Liu ◽  
...  

The present study aimed to identify the molecular markers for genes that influence intramuscular fat content (IFC), but not average backfat thickness (ABT). A total of 330 Suhuai pigs were slaughtered, and measurements of IFC and ABT were obtained. Phenotypic and genetic correlations between IFC and ABT were calculated. Thirteen single nucleotide polymorphisms (SNPs) among 12 candidate genes for IFC were analyzed, including FABP3, LIPE, IGF1, IGF2, LEP, LEPR, MC4R, PHKG1, RETN, RYR1, SCD, and UBE3C. Associations of the evaluated SNPs with IFCIFC and ABT were performed. Our results showed that the means of IFC and ABT were 1.99 ± 0.03 % and 26.68 ± 0.28 mm, respectively. The coefficients of variation (CVs) of IFC and ABT were 31.21% and 19.36%, respectively. The phenotypic and genetic correlations between IFC and ABT were moderate. Only the FABP3 (rs1110770079) was associated with IFC (p < 0.05) but not with ABT. Besides, there was a tendency for associations of RYR1 (rs344435545) and SCD (rs80912566) with IFC (p < 0.1). Our results indicated that the FABP3 (rs1110770079) SNP could be used as a marker to improve IFC without changing ABT in the Suhuai pig breeding system.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Qiu-jie Li ◽  
Na Su ◽  
Ling Zhang ◽  
Ru-chang Tong ◽  
Xiao-hui Zhang ◽  
...  

AbstractPulsatilla (Ranunculaceae) consists of about 40 species, and many of them have horticultural and/or medicinal value. However, it is difficult to recognize and identify wild Pulsatilla species. Universal molecular markers have been used to identify these species, but insufficient phylogenetic signal was available. Here, we compared the complete chloroplast genomes of seven Pulsatilla species. The chloroplast genomes of Pulsatilla were very similar and their length ranges from 161,501 to 162,669 bp. Eight highly variable regions and potential sources of molecular markers such as simple sequence repeats, large repeat sequences, and single nucleotide polymorphisms were identified, which are valuable for studies of infra- and inter-specific genetic diversity. The SNP number differentiating any two Pulsatilla chloroplast genomes ranged from 112 to 1214, and provided sufficient data for species delimitation. Phylogenetic trees based on different data sets were consistent with one another, with the IR, SSC regions and the barcode combination rbcL + matK + trnH-psbA produced slightly different results. Phylogenetic relationships within Pulsatilla were certainly resolved using the complete cp genome sequences. Overall, this study provides plentiful chloroplast genomic resources, which will be helpful to identify members of this taxonomically challenging group in further investigation.


2004 ◽  
Vol 50 (11) ◽  
pp. 2028-2036 ◽  
Author(s):  
Susan Bortolin ◽  
Margot Black ◽  
Hemanshu Modi ◽  
Ihor Boszko ◽  
Daniel Kobler ◽  
...  

Abstract Background: We have developed a novel, microsphere-based universal array platform referred to as the Tag-It™ platform. This platform is suitable for high-throughput clinical genotyping applications and was used for multiplex analysis of a panel of thrombophilia-associated single-nucleotide polymorphisms (SNPs). Methods: Genomic DNA from 132 patients was amplified by multiplex PCR using 6 primer sets, followed by multiplex allele-specific primer extension using 12 universally tagged genotyping primers. The products were then sorted on the Tag-It array and detected by use of the Luminex xMAP™ system. Genotypes were also determined by sequencing. Results: Empirical validation of the universal array showed that the highest nonspecific signal was 3.7% of the specific signal. Patient genotypes showed 100% concordance with direct DNA sequencing data for 736 SNP determinations. Conclusions: The Tag-It microsphere-based universal array platform is a highly accurate, multiplexed, high-throughput SNP-detection platform.


2021 ◽  
Author(s):  
So-Hyeon Bong ◽  
Ganghee Cho ◽  
Dong-Seon Kim ◽  
Sunggil Kim

Abstract Self-incompatibility (SI) responses of radish (Raphanus sativus L.) are determined by two tightly linked genes encoding an S receptor kinase (SRK) and an S-locus cysteine-rich protein/S locus protein 11 (SCR/SP11), respectively. A radish showing an almost self-compatible (SC) phenotype was identified in this study. Inheritance patterns showed that this SC phenotype was dominant over an SI phenotype. In addition, this SC phenotype co-segregated with an S haplotype in an F2 population. This SC radish contained an RsS-26 haplotype in which duplicate SRK-like genes were previously identified. Full-length sequences of two SRK-like genes of 18,133-bp and 6,200-bp in length were obtained from radish with the RsS-26 haplotype (designated as RsSRK-26-1 and RsSRK-26-2, respectively). Duplicate SCR/SP11-like genes were also identified in the radish with the RsS-26 haplotype. Phylogenetic analyses indicated that both duplicate SRK-like and SCR/SP11-like genes were closely related to other known SRK and SCR/SP11 genes, respectively. No critical mutation was found in the coding region of SRK-like or SCR/SP11-like gene. However, a 4,146-bp intact LTR-retrotransposon was identified in the third intron of RsSRK-26-1 of the SC radish. Interestingly, this LTR-retrotransposon was not detected in three other breeding lines containing the same RsS-26 haplotype. Except for this LTR-retrotransposon, only two single nucleotide polymorphisms (SNPs) were identified in intronic regions between normal and mutant RsSRK-26-1 alleles. While normal transcription was observed for radish showing RsSRK-26-1 and SI phenotypes in these three breeding lines, no transcript of RsSRK-26-1 was detected in the SC radish, suggesting that recent transposition of an LTR-retrotransposon in the RsSRK-26-1 gene might be responsible for the SC phenotype of radish.


Sign in / Sign up

Export Citation Format

Share Document