scholarly journals Retrospect and Risk Analysis of Foot-and-Mouth Disease in China Based on Integrated Surveillance and Spatial Analysis Tools

Author(s):  
Jiahui Chen ◽  
Jianying Wang ◽  
Minjia Wang ◽  
Ruirui Liang ◽  
Yi Lu ◽  
...  
2017 ◽  
Vol 581-582 ◽  
pp. 766-772 ◽  
Author(s):  
Huong Xuan Nguyen ◽  
Cordia Chu ◽  
Huong Lien Thi Nguyen ◽  
Ha Thanh Nguyen ◽  
Cuong Manh Do ◽  
...  

2011 ◽  
Vol 12 (2) ◽  
pp. 225-234 ◽  
Author(s):  
Sith Premashthira ◽  
Mo D. Salman ◽  
Ashley E. Hill ◽  
Robin M. Reich ◽  
Bruce A. Wagner

AbstractFoot-and-mouth disease (FMD) is one of the most serious transboundary, contagious viral diseases of cloven-hoofed livestock, because it can spread rapidly with high morbidity rates when introduced into disease-free herds or areas. Epidemiological simulation modeling can be developed to study the hypothetical spread of FMD and to evaluate potential disease control strategies that can be implemented to decrease the impact of an outbreak or to eradicate the virus from an area. Spatial analysis, a study of the distributions of events in space, can be applied to an area to investigate the spread of animal disease. Hypothetical FMD outbreaks can be spatially analyzed to evaluate the effect of the event under different control strategies. The main objective of this paper is to review FMD-related articles on FMD epidemiology, epidemiological simulation modeling and spatial analysis with the focus on disease control. This review will contribute to the development of models used to simulate FMD outbreaks under various control strategies, and to the application of spatial analysis to assess the outcome of FMD spread and its control.


Author(s):  
Sydney S. Breese ◽  
Howard L. Bachrach

Continuing studies on the physical and chemical properties of foot-and-mouth disease virus (FMDV) have included electron microscopy of RNA strands released when highly purified virus (1) was dialyzed against demlneralized distilled water. The RNA strands were dried on formvar-carbon coated electron microscope screens pretreated with 0.1% bovine plasma albumin in distilled water. At this low salt concentration the RNA strands were extended and were stained with 1% phosphotungstic acid. Random dispersions of strands were recorded on electron micrographs, enlarged to 30,000 or 40,000 X and the lengths measured with a map-measuring wheel. Figure 1 is a typical micrograph and Fig. 2 shows the distributions of strand lengths for the three major types of FMDV (A119 of 6/9/72; C3-Rezende of 1/5/73; and O1-Brugge of 8/24/73.


Author(s):  
S. S. Breese ◽  
H. L. Bachrach

Models for the structure of foot-and-mouth disease virus (FMDV) have been proposed from chemical and physical measurements (Brown, et al., 1970; Talbot and Brown, 1972; Strohmaier and Adam, 1976) and from rotational image-enhancement electron microscopy (Breese, et al., 1965). In this report we examine the surface structure of FMDV particles by high resolution electron microscopy and compare it with that of particles in which the outermost capsid protein VP3 (ca. 30, 000 daltons) has been split into smaller segments, two of which VP3a and VP3b have molecular weights of about 15, 000 daltons (Bachrach, et al., 1975).Highly purified and concentrated type A12, strain 119 FMDV (5 mg/ml) was prepared as previously described (Bachrach, et al., 1964) and stored at 4°C in 0. 2 M KC1-0. 5 M potassium phosphate buffer at pH 7. 5. For electron microscopy, 1. 0 ml samples of purified virus and trypsin-treated virus were dialyzed at 4°C against 0. 2 M NH4OAC at pH 7. 3, deposited onto carbonized formvar-coated copper screens and stained with phosphotungstic acid, pH 7. 3.


Sign in / Sign up

Export Citation Format

Share Document