scholarly journals Storage Efficient Trajectory Clustering and k-NN for Robust Privacy Preserving Spatio-Temporal Databases

Algorithms ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 266 ◽  
Author(s):  
Elias Dritsas ◽  
Andreas Kanavos ◽  
Maria Trigka ◽  
Spyros Sioutas ◽  
Athanasios Tsakalidis

The need to store massive volumes of spatio-temporal data has become a difficult task as GPS capabilities and wireless communication technologies have become prevalent to modern mobile devices. As a result, massive trajectory data are produced, incurring expensive costs for storage, transmission, as well as query processing. A number of algorithms for compressing trajectory data have been proposed in order to overcome these difficulties. These algorithms try to reduce the size of trajectory data, while preserving the quality of the information. In the context of this research work, we focus on both the privacy preservation and storage problem of spatio-temporal databases. To alleviate this issue, we propose an efficient framework for trajectories representation, entitled DUST (DUal-based Spatio-temporal Trajectory), by which a raw trajectory is split into a number of linear sub-trajectories which are subjected to dual transformation that formulates the representatives of each linear component of initial trajectory; thus, the compressed trajectory achieves compression ratio equal to M : 1 . To our knowledge, we are the first to study and address k-NN queries on nonlinear moving object trajectories that are represented in dual dimensional space. Additionally, the proposed approach is expected to reinforce the privacy protection of such data. Specifically, even in case that an intruder has access to the dual points of trajectory data and try to reproduce the native points that fit a specific component of the initial trajectory, the identity of the mobile object will remain secure with high probability. In this way, the privacy of the k-anonymity method is reinforced. Through experiments on real spatial datasets, we evaluate the robustness of the new approach and compare it with the one studied in our previous work.

2011 ◽  
pp. 272-293
Author(s):  
Junmei Wang ◽  
Wynne Hsu ◽  
Mong Li Lee

Recent interest in spatio-temporal applications has been fueled by the need to discover and predict complex patterns that occur when we observe the behavior of objects in the three-dimensional space of time and spatial coordinates. Although the complex and intrinsic relationships among the spatio-temporal data limit the usefulness of conventional data mining techniques to discover the patterns in the spatio-temporal databases, they also lead to opportunities for mining new classes of patterns in spatio-temporal databases. This chapter provides a survey of the work done for mining patterns in spatial databases and temporal databases, and the preliminary work for mining patterns in spatio-temporal databases. We highlight the unique challenges of mining interesting patterns in spatio-temporal databases. We also describe two special types of spatio-temporal patterns: location-sensitive sequence patterns and geographical features for location-based service patterns.


Algorithms ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 207 ◽  
Author(s):  
Elias Dritsas ◽  
Maria Trigka ◽  
Panagiotis Gerolymatos ◽  
Spyros Sioutas 

In the context of this research work, we studied the problem of privacy preserving on spatiotemporal databases. In particular, we investigated the k-anonymity of mobile users based on real trajectory data. The k-anonymity set consists of the k nearest neighbors. We constructed a motion vector of the form (x,y,g,v) where x and y are the spatial coordinates, g is the angle direction, and v is the velocity of mobile users, and studied the problem in four-dimensional space. We followed two approaches. The former applied only k-Nearest Neighbor (k-NN) algorithm on the whole dataset, while the latter combined trajectory clustering, based on K-means, with k-NN. Actually, it applied k-NN inside a cluster of mobile users with similar motion pattern (g,v). We defined a metric, called vulnerability, that measures the rate at which k-NNs are varying. This metric varies from 1 k (high robustness) to 1 (low robustness) and represents the probability the real identity of a mobile user being discovered from a potential attacker. The aim of this work was to prove that, with high probability, the above rate tends to a number very close to 1 k in clustering method, which means that the k-anonymity is highly preserved. Through experiments on real spatial datasets, we evaluated the anonymity robustness, the so-called vulnerability, of the proposed method.


Algorithms ◽  
2020 ◽  
Vol 13 (8) ◽  
pp. 182
Author(s):  
Elias Dritsas ◽  
Andreas Kanavos ◽  
Maria Trigka ◽  
Gerasimos Vonitsanos ◽  
Spyros Sioutas ◽  
...  

Privacy Preserving and Anonymity have gained significant concern from the big data perspective. We have the view that the forthcoming frameworks and theories will establish several solutions for privacy protection. The k-anonymity is considered a key solution that has been widely employed to prevent data re-identifcation and concerns us in the context of this work. Data modeling has also gained significant attention from the big data perspective. It is believed that the advancing distributed environments will provide users with several solutions for efficient spatio-temporal data management. GeoSpark will be utilized in the current work as it is a key solution that has been widely employed for spatial data. Specifically, it works on the top of Apache Spark, the main framework leveraged from the research community and organizations for big data transformation, processing and visualization. To this end, we focused on trajectory data representation so as to be applicable to the GeoSpark environment, and a GeoSpark-based approach is designed for the efficient management of real spatio-temporal data. Th next step is to gain deeper understanding of the data through the application of k nearest neighbor (k-NN) queries either using indexing methods or otherwise. The k-anonymity set computation, which is the main component for privacy preservation evaluation and the main issue of our previous works, is evaluated in the GeoSpark environment. More to the point, the focus here is on the time cost of k-anonymity set computation along with vulnerability measurement. The extracted results are presented into tables and figures for visual inspection.


2008 ◽  
pp. 3477-3492
Author(s):  
Junmei Wang ◽  
Wynne Hsu ◽  
Mong Li Lee

Recent interest in spatio-temporal applications has been fueled by the need to discover and predict complex patterns that occur when we observe the behavior of objects in the three-dimensional space of time and spatial coordinates. Although the complex and intrinsic relationships among the spatio-temporal data limit the usefulness of conventional data mining techniques to discover the patterns in the spatio-temporal databases, they also lead to opportunities for mining new classes of patterns in spatio-temporal databases. This chapter provides a survey of the work done for mining patterns in spatial databases and temporal databases, and the preliminary work for mining patterns in spatio-temporal databases. We highlight the unique challenges of mining interesting patterns in spatio-temporal databases. We also describe two special types of spatio-temporal patterns: location-sensitive sequence patterns and geographical features for location-based service patterns.


Author(s):  
K. Urban ◽  
Z. Zhang ◽  
M. Wollgarten ◽  
D. Gratias

Recently dislocations have been observed by electron microscopy in the icosahedral quasicrystalline (IQ) phase of Al65Cu20Fe15. These dislocations exhibit diffraction contrast similar to that known for dislocations in conventional crystals. The contrast becomes extinct for certain diffraction vectors g. In the following the basis of electron diffraction contrast of dislocations in the IQ phase is described. Taking account of the six-dimensional nature of the Burgers vector a “strong” and a “weak” extinction condition are found.Dislocations in quasicrystals canot be described on the basis of simple shear or insertion of a lattice plane only. In order to achieve a complete characterization of these dislocations it is advantageous to make use of the one to one correspondence of the lattice geometry in our three-dimensional space (R3) and that in the six-dimensional reference space (R6) where full periodicity is recovered . Therefore the contrast extinction condition has to be written as gpbp + gobo = 0 (1). The diffraction vector g and the Burgers vector b decompose into two vectors gp, bp and go, bo in, respectively, the physical and the orthogonal three-dimensional sub-spaces of R6.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 531
Author(s):  
Pedro Pablo Ortega Palencia ◽  
Ruben Dario Ortiz Ortiz ◽  
Ana Magnolia Marin Ramirez

In this article, a simple expression for the center of mass of a system of material points in a two-dimensional surface of Gaussian constant negative curvature is given. By using the basic techniques of geometry, we obtained an expression in intrinsic coordinates, and we showed how this extends the definition for the Euclidean case. The argument is constructive and serves to define the center of mass of a system of particles on the one-dimensional hyperbolic sphere LR1.


Author(s):  
Haoyang Meng ◽  
Sheng Dong ◽  
Jibiao Zhou ◽  
Shuichao Zhang ◽  
Zhenjiang Li

Green flash light (FG) and green countdown (GC) are the two most common signal formats applied in green-red transition that provides drivers additional alert before termination of green phase. Due to their importance and function in stop-pass decision-making process, proper use of them has become a critical issue to greatly improve the safety and efficiency of signalized intersections. Gradually e-bike riders have become more important commuters in China, however, the influence of FG or GC on them is not clear yet and need pay more attention to it. This study chooses two almost identical intersections to obtain highly accurate trajectory data of e-bike riders to study their decision-making behaviors under FG or GC. The e-bike riders’ behavior is classified into four categories and is to identify their stop-pass decision points using the acceleration trend. Two binary-logit models were built to predict the stop–pass decision behaviors for the different e-bike rider groups, explaining that the potential time to the stop-line is the dominant independent factor of the different behaviors of GC and FG. Furthermore empirical analysis of decision points indicated that GC provides the earlier stop-pass decision point and longer decision making duration on the one side while results in more complexity of decision making and greater risk of stop-line crossing than FG on the other side.


2020 ◽  
Vol 13 (1) ◽  
pp. 112
Author(s):  
Helai Huang ◽  
Jialing Wu ◽  
Fang Liu ◽  
Yiwei Wang

Accessibility has attracted wide interest from urban planners and transportation engineers. It is an important indicator to support the development of sustainable policies for transportation systems in major events, such as the COVID-19 pandemic. Taxis are a vital travel mode in urban areas that provide door-to-door services for individuals to perform urban activities. This study, with taxi trajectory data, proposes an improved method to evaluate dynamic accessibility depending on traditional location-based measures. A new impedance function is introduced by taking characteristics of the taxi system into account, such as passenger waiting time and the taxi fare rule. An improved attraction function is formulated by considering dynamic availability intensity. Besides, we generate five accessibility scenarios containing different indicators to compare the variation of accessibility. A case study is conducted with the data from Shenzhen, China. The results show that the proposed method found reduced urban accessibility, but with a higher value in southern center areas during the evening peak period due to short passenger waiting time and high destination attractiveness. Each spatio-temporal indicator has an influence on the variation in accessibility.


2021 ◽  
Vol 13 (2) ◽  
pp. 690
Author(s):  
Tao Wu ◽  
Huiqing Shen ◽  
Jianxin Qin ◽  
Longgang Xiang

Identifying stops from GPS trajectories is one of the main concerns in the study of moving objects and has a major effect on a wide variety of location-based services and applications. Although the spatial and non-spatial characteristics of trajectories have been widely investigated for the identification of stops, few studies have concentrated on the impacts of the contextual features, which are also connected to the road network and nearby Points of Interest (POIs). In order to obtain more precise stop information from moving objects, this paper proposes and implements a novel approach that represents a spatio-temproal dynamics relationship between stopping behaviors and geospatial elements to detect stops. The relationship between the candidate stops based on the standard time–distance threshold approach and the surrounding environmental elements are integrated in a complex way (the mobility context cube) to extract stop features and precisely derive stops using the classifier classification. The methodology presented is designed to reduce the error rate of detection of stops in the work of trajectory data mining. It turns out that 26 features can contribute to recognizing stop behaviors from trajectory data. Additionally, experiments on a real-world trajectory dataset further demonstrate the effectiveness of the proposed approach in improving the accuracy of identifying stops from trajectories.


2021 ◽  
Vol 13 (5) ◽  
pp. 2911
Author(s):  
Jesús Manuel De Sancha-Navarro ◽  
Juan Lara-Rubio ◽  
María Dolores Oliver-Alfonso ◽  
Luis Palma-Martos

University students consume live music; however, almost 40% declare that they have never attended a flamenco show, an intangible heritage of humankind. Numerous studies have shown that cultural capital and socioeconomic profile, among other factors, are variables that influence cultural consumption, and therefore, cultural sustainability. Considering the relationship between several variables, this paper pursues a double objective. On the one hand, identifying the factors that influence attendance at flamenco shows, and on the other, proposing a predictive model that quantifies the likelihood of an individual attending a flamenco show. To this end, we analyse flamenco consumption by means of a survey conducted on 452 university students, using Multilayer Perceptrom (a non-parametric model), a methodology based on an artificial neural network. Our results confirm the importance of cultural capital, as well as personal and external factors, among other. The findings of this research work are of potential interest for management and planning of cultural events, as well as to promote cultural sustainability.


Sign in / Sign up

Export Citation Format

Share Document