scholarly journals An Improved Equivalent-Input-Disturbance Method for Uncertain Networked Control Systems with Packet Losses and Exogenous Disturbances

Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 263
Author(s):  
Meiliu Li ◽  
Jinhua She ◽  
Zhen-Tao Liu ◽  
Min Wu ◽  
Yasuhiro Ohyama

In a networked control system (NCS), time delays, uncertainties, packet losses, and exogenous disturbances seriously affect the control performance. To solve these problems, a modified disturbance suppression configuration of NCS was built. In the configuration, a proportional–integral observer (PIO) reproduces the state of a plant and reduces the observation error; an equivalent input disturbance (EID) estimator estimates and compensates for the disturbance in the control input channel. The stability conditions of the NCS are given by using a linear matrix inequality, and the gains of the PIO and state feedback controller are obtained. Numerical simulation results and an application of a magnetic levitation ball system verifies the effectiveness of the presented method. Comparison with the conventional PIO and EID methods shows that the presented method reduced the tracking error to about one-fifth and two-thirds of their original values, respectively. This demonstrates the validity and superiority of the presented method.

Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1034 ◽  
Author(s):  
Xudong Liu ◽  
Qi Zhang

The implementation and experimental validation of current control strategy based on predictive control and equivalent input disturbance approach is discussed for permanent magnet synchronous motor (PMSM) control system in the paper. First, to realize the current decoupling control, the deadbeat predictive current control technique is adopted in the current loop of PMSM. Indeed, it is well known that the traditional deadbeat current control cannot completely reject the disturbance and realize the zero error current tracking control. Then, according to the model uncertainties and the parameter variations in the motor, an equivalent input disturbance approach is introduced to estimate the lump disturbance in the system, which will be used in the feed-forward compensation. Thus, a compound current controller is designed, and the proposed algorithm reduces the tracking error caused by the disturbance; the robustness of the drive system is improved effectively. Finally, simulation and experiment are accomplished on the control prototype, and the results show the effectiveness of the proposed current control algorithm.


2010 ◽  
Vol 44-47 ◽  
pp. 1867-1671
Author(s):  
Zhi Hong Huo ◽  
Yuan Zheng ◽  
Chang Xu

Networked control systems with network-induced delay, packet loss and parameters uncertainty is modeled in this paper, consider the sensors that can’t send information to controller and the actuators that can’t receive information calculated and sent by the controller, the integrity design of the networked control system with sensors failures and actuators failures is analyzed based on robust fault-tolerant control theory. Parametric expression of controller is given based on feasible solution of linear matrix inequality. After detailed theoretical analysis, the simulation results is provided, which further demonstrated the proposed scheme.


Author(s):  
Mingxing Fang ◽  
◽  
Lijun Wu ◽  
Jing Cheng ◽  
Youwu Du ◽  
...  

This paper describes an approach for suppressing earthquake-induced vibrations of building structures. The design of the control system is based on the equivalent-input-disturbance approach for improving the vibration rejection performance. A control system configuration with a vibration estimator is described, and a method of designing such a control system that employsΗ∞control is presented. The vibration rejection performance is guaranteed by the control structure, in which an equivalent vibration signal on the control input channel is estimated and directly incorporated into the control input. The validity of our method is demonstrated through simulations.


2010 ◽  
Vol 20 (2) ◽  
pp. 165-186 ◽  
Author(s):  
Dusan Krokavec ◽  
Anna Filasová

Exponential stability of networked control systems with network-induced random delaysIn this paper, the problem of exponential stability for the standard form of the state control, realized in a networked control system structure, is studied. To deal with the problem of stability analysis of the event-time-driven modes in the networked control systems the delayed-dependent exponential stability conditions are reformulated and proven. Based on the delay-time dependent Lyapunov-Krasovskii functional, exponential stability criteria are derived. These criteria are expressed as a set of linear matrix inequalities and their structure can be modified to use the bilinear inequality techniques.


2018 ◽  
Vol 7 (2.31) ◽  
pp. 249
Author(s):  
Richa Sharma ◽  
Deepak Nagaria

Networked control system is a closed loop system in which information or data travel through the communication network. The presence of communication network will increase time delay and information losses. Due to these losses and delay the performance of the system decreases. This paper represents an analysis to find the stability of the networked control system with the varying time hindrances present in the network. In this research, it has been assumed that the delay in time is less than the sampling period. The stability conditions for NCS have been procured with the use of the Lyapunov function approach and has been described in terms of LMI(Linear Matrix Inequality).This examination confirm the adequate state of stability through MATLAB simulation and the numerical case demonstrates the outcome.  


Sign in / Sign up

Export Citation Format

Share Document