scholarly journals Development of Point-to-Point Path Control in Actuator Space for Hydraulic Knuckle Boom Crane

Actuators ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 27
Author(s):  
Konrad Johan Jensen ◽  
Morten Kjeld Ebbesen ◽  
Michael Rygaard Hansen

This paper presents a novel method for point-to-point path control for a hydraulic knuckle boom crane. The developed path control algorithm differs from previous solutions by operating in the actuator space instead of the joint space or Cartesian space of the crane. By operating in actuator space, almost all the parameters and constraints of the system become either linear or constant, which greatly reduces the complexity of both the control algorithm and path generator. For a given starting point and endpoint, the motion for each actuator is minimized compared to other methods. This ensures that any change in direction of motion is avoided, thereby greatly minimizing fatigue, jerky motion, and energy consumption. However, where other methods may move the tool-point in a straight line from start to end, the method in actuator space will not. In addition, when working in actuator space in combination with pressure-compensated control valves, there is no need for linearization of the system or feedback linearization due to the linear relationship between the control signal and the actuator velocities. The proposed solution has been tested on a physical system and shows good setpoint tracking and minimal oscillations.

Motor Control ◽  
1998 ◽  
Vol 2 (4) ◽  
pp. 331-351 ◽  
Author(s):  
Edwin Van Thiel ◽  
Ruud G.J. Meulenbroek ◽  
Wouter Hulstijn

In this study we tried to establish whether point-to-point aiming movements are planned in workspace, joint space, or both. Eight right-handed subjects performed horizontal, vertical, and diagonal aiming movements on a transversal plane. Movements were performed at several speeds. Curvature variations of the hand and corresponding joint-space paths were investigated as a function of position, direction, and speed. Straightness of hand paths predominated for vertical movements but was systematically violated for horizontal and top-right to bottom-left movements. Furthermore, the hand-path curvature of the latter movements increased with speed. Joint-space paths showed more deviation from a straight line than hand paths except for top-left to bottom-right movements in which the paths were equally curved. A comparison of normalized path curvatures at the hand and joint level indicated that in aiming, the coordinative rule of straight-line production seems to apply to both workspace and joint-space planning. The present findings confirm Kawato's (1996) views that optimization processes operate concurrently at the two control levels of arm-trajectory formation under study.


2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Zeyu Shi ◽  
Yingpin Wang ◽  
Yunxiang Xie ◽  
Lanfang Li ◽  
Xiaogang Xu

Active power filter (APF) is the most popular device in regulating power quality issues. Currently, most literatures ignored the impact of grid impedance and assumed the load voltage is ideal, which had not described the system accurately. In addition, the controllers applied PI control; thus it is hard to improve the compensation quality. This paper establishes a precise model which consists of APF, load, and grid impedance. The Bode diagram of traditional simplified model is obviously different with complete model, which means the descriptions of the system based on the traditional simplified model are inaccurate and incomplete. And then design exact feedback linearization and quasi-sliding mode control (FBL-QSMC) is based on precise model in inner current loop. The system performances in different parameters are analyzed and dynamic performance of proposed algorithm is compared with traditional PI control algorithm. At last, simulations are taken in three cases to verify the performance of proposed control algorithm. The results proved that the proposed feedback linearization and quasi-sliding mode control algorithm has fast response and robustness; the compensation performance is superior to PI control obviously, which also means the complete modeling and proposed control algorithm are correct.


Author(s):  
Márton Balázs ◽  
Ofer Busani ◽  
Timo Seppäläinen

AbstractWe consider point-to-point last-passage times to every vertex in a neighbourhood of size $$\delta N^{\nicefrac {2}{3}}$$ δ N 2 3 at distance N from the starting point. The increments of the last-passage times in this neighbourhood are shown to be jointly equal to their stationary versions with high probability that depends only on $$\delta $$ δ . Through this result we show that (1) the $$\text {Airy}_2$$ Airy 2 process is locally close to a Brownian motion in total variation; (2) the tree of point-to-point geodesics from every vertex in a box of side length $$\delta N^{\nicefrac {2}{3}}$$ δ N 2 3 going to a point at distance N agrees inside the box with the tree of semi-infinite geodesics going in the same direction; (3) two point-to-point geodesics started at distance $$N^{\nicefrac {2}{3}}$$ N 2 3 from each other, to a point at distance N, will not coalesce close to either endpoint on the scale N. Our main results rely on probabilistic methods only.


2018 ◽  
Vol 22 (78) ◽  
pp. 63-74
Author(s):  
Janne Lindqvist

Our understanding of Aristotle’s Rhetoric is still incomplete and distorted. This is especially true concerning his analysis of the specific topics of pathos that make up a significant part of the second book of the text. Even though this part of the text is almost twice as long as the analysis of the common topics, the discussion has attracted surprisingly small scholarly interest, at least as viewed as an example of a list of topics, as the researchers that have aspired to an understanding of “the topics” as such have almost all ignored this part of the text. The purpose of this essay is to lay out the grounds for such a study. The result of the essay is firstly a distinction between two kinds of specific topics, here somewhat ponderously labeled schematic and concrete specific topics. With these as a starting point it is possible to make a further distinction between three general specific topics here named subject, stimulus and agent. These three schematic topics could, it is finally suggested, be as useful in the 21:st century as they were in an Athens of the 4th century BCE


2016 ◽  
Vol 24 ◽  
pp. S379
Author(s):  
R. Ljuhar ◽  
B. Norman ◽  
D. Ljuhar ◽  
T. Haftner ◽  
J. Hladuvka ◽  
...  

2017 ◽  
Vol 27 (01n02) ◽  
pp. 121-158 ◽  
Author(s):  
Martin Nöllenburg ◽  
Roman Prutkin ◽  
Ignaz Rutter

A greedily routable region (GRR) is a closed subset of [Formula: see text], in which any destination point can be reached from any starting point by always moving in the direction with maximum reduction of the distance to the destination in each point of the path. Recently, Tan and Kermarrec proposed a geographic routing protocol for dense wireless sensor networks based on decomposing the network area into a small number of interior-disjoint GRRs. They showed that minimum decomposition is NP-hard for polygonal regions with holes. We consider minimum GRR decomposition for plane straight-line drawings of graphs. Here, GRRs coincide with self-approaching drawings of trees, a drawing style which has become a popular research topic in graph drawing. We show that minimum decomposition is still NP-hard for graphs with cycles and even for trees, but can be solved optimally for trees in polynomial time, if we allow only certain types of GRR contacts. Additionally, we give a 2-approximation for simple polygons, if a given triangulation has to be respected.


1851 ◽  
Vol 1 (1) ◽  
pp. 40-46
Author(s):  
Edwin James Farren

The term scholar, as current in the English language, has two extreme acceptations, tyro and proficient; or what the later Greeks fancifully termed the alpha and omega of acquirement. If we attempt to trace the steps by which even the adult student of any especial branch of professional or literary knowledge has fairly passed the boundary defined by the one meaning in passing on to that position denoted by the other, it will commonly be found, that in place of that lucid order, that straight line from point to point, which theory and resolve generally premise, the real order of acquirement has been desultory—the real line of progression, circuitous and uncertain.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Wenqing Zhang ◽  
Jie Li ◽  
Kun Zhang ◽  
Peng Cui

Hybrid suspension system with permanent magnet and electromagnet consumes little power consumption and can realize larger suspension gap. But realizing stable suspension of hybrid magnet is a tricky problem in the suspension control sphere. Considering from this point, we take magnetic flux signal as a state variable and put this signal back to suspension control system. So we can get the hybrid suspension mathematical model based on magnetic flux signal feedback. By application of MIMO feedback linearization theory, we can further realize linearization of the hybrid suspension system. And then proportion, integral, differentiation, magnetic flux density B (PIDB) controller is designed. Some hybrid suspension experiments have been done on CMS04 magnetic suspension bogie of National University of Defense Technology (NUDT) in China. The experiments denote that the new hybrid suspension control algorithm based on magnetic flux signal feedback designed in this paper has more advantages than traditional position-current double cascade control algorithm. Obviously, the robustness and stability of hybrid suspension system have been enhanced.


Author(s):  
Abdelkarim Ammar

Purpose This paper aims to propose an improved direct torque control (DTC) for the induction motor’s performance enhancement using dual nonlinear techniques. The exact feedback linearization is implemented to create a linear decoupled control. Besides, the fuzzy logic control approach has been inserted to generate the auxiliary control input for the feedback linearization controller. Design/methodology/approach To improve the DTC for induction motor drive, this work suggests the incorporation of two nonlinear approaches. As the classical feedback linearization suffers while the presence of uncertainties and modeling inaccuracy, it is recommended to be associated to another robust control approach to compensate the uncertainties of the model and make a robust control versus the variations of the machine parameters. Therefore, fuzzy logic controllers will be integrated as auxiliary inputs to the feedback linearization control law. Findings The simulation and the experimental validation of the proposed control algorithm show that the association of dual techniques can effectively achieve high dynamic behavior and improve the robustness against parameters variation and external disturbances. Moreover, the space vector modulation is used to preserve a fixed switching frequency, reduce ripples and low switching losses. Practical implications The theoretical, simulation and experimental studies prove that the proposed control algorithm can be used on different AC machines for variable speed drive applications such as oil drilling, traction systems and wind energy conversion systems. Originality/value The proposed DTC strategy has been developed theoretically and realized through simulation and experimental implementation. Different operation conditions have been conducted to check the ability and robustness of the control strategy, such as steady state, speed reversal maneuver, low-speed operation and parameters variation test with load application.


Author(s):  
Damien Chablat ◽  
Philippe Wenger

Abstract The goal of this paper is to define the n-connected regions in the Cartesian workspace of fully-parallel manipulators, i.e. the maximal regions where it is possible to execute point-to-point motions. The manipulators considered in this study may have multiple direct and inverse kinematic solutions. The N-connected regions are characterized by projection, onto the Cartesian workspace, of the connected components of the reachable configuration space defined in the Cartesian product of the Cartesian space by the joint space. Generalized octree models are used for the construction of all spaces. This study is illustrated with a simple planar fully-parallel manipulator.


Sign in / Sign up

Export Citation Format

Share Document