scholarly journals Evaluating a Controlled-Release Fertilizer for Plant Establishment in Floating Elements for Bioretention Ponds

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 199 ◽  
Author(s):  
Giampaolo Zanin ◽  
Carmelo Maucieri ◽  
Nicola Dal Ferro ◽  
Lucia Bortolini ◽  
Maurizio Borin

In bioretention ponds proposed to manage urban runoff, floating elements with anchored macrophytes plants improve nutrient and pollutants removal and provide aesthetic benefits. To prompt the establishment and initial growth of plants in floating elements with substrate, the application of Osmocote (a controlled-release fertilizer) in tablet form was proposed. In a confined environment, eight treatments were compared, combining two substrates (peat and zeolite at a ratio of 1:1 or 2:1 v/v), two levels of fertilization (without or with addition of Osmocote plus tablets; 5 g plant−1), and the presence or absence of Mentha aquatica L. plants. For about 16 weeks, the amount and quality of water, along with plant growth and nutrient content, were monitored. The results showed better plant growth when Osmocote was supplied, with no effect of the substrate. The presence of the plant produced the almost total uptake of the nutrients contained in the tap water and released by the fertilizer. This indicates that the use of a controlled release fertilizer can improve plant growth without compromising water quality, hence being a valuable solution to promote plant establishment usable as routine practice when a bioretention basin is vegetated with floating elements with substrate.

FLORESTA ◽  
2018 ◽  
Vol 48 (3) ◽  
pp. 303 ◽  
Author(s):  
Thuanny Lins Monteiro Rosa ◽  
Renan Baptista Jordaim ◽  
Rodrigo Sobreira Alexandre ◽  
Caroline Palacio de Araujo ◽  
Fabrício Gomes Gonçalves ◽  
...  

Moringa oleifera presents important medicinal properties, and its seeds are used to treat water for human consumption and wastewater. The aim of the present study was to analyze the initial growth of M. oleifera seedlings in enriched commercial substrate with differing doses of controlled release fertilizer. The experimental was designed in randomized blocks, with four repetitions of 16 seedlings each. The treatment used doses of controlled release fertilizer, with 0; 2; 4; 6; and 8 kg m-3 of commercial substrate. A hundred days after installing the experiment, the following characteristics were analyzed: height of the aerial part; diameter of the root collar; length; volume; and dry mass of the roots and aerial part. Additionally, the relation between the height of the aerial part and the diameter of the root collar and the Dickson quality index (DQI) were determined. The data was submitted to analysis of variance and to the Shapiro-Wilk test to verify the normality and regression. Controlled release fertilizer at a dose of 5.37 kg m-3 of substrate is recommended for M. oleifera seedling production.


HortScience ◽  
2020 ◽  
Vol 55 (12) ◽  
pp. 1956-1962
Author(s):  
Ji-Jhong Chen ◽  
Heidi Kratsch ◽  
Jeanette Norton ◽  
Youping Sun ◽  
Larry Rupp

Shepherdia ×utahensis ‘Torrey’ (‘Torrey’ hybrid buffaloberry) is an actinorhizal plant that can fix atmospheric nitrogen (N2) in symbiotic root nodules with Frankia. Actinorhizal plants with N2-fixing capacity are valuable in sustainable nursery production and urban landscape use. However, whether nodule formation occurs in S. ×utahensis ‘Torrey’ and its interaction with nitrogen (N) fertilization remain largely unknown. Increased mineral N in fertilizer or nutrient solution might inhibit nodulation and lead to excessive N leaching. In this study, S. ×utahensis ‘Torrey’ plants inoculated with soils containing Frankia were irrigated with an N-free nutrient solution with or without added 2 mm ammonium nitrate (NH4NO3) or with 0.0 to 8.4 g·L−1 controlled-release fertilizer (CRF; 15N–3.9P–10K) to study nodulation and plant morphological and physiological responses. The performance of inoculated plants treated with various amounts of CRF was compared with uninoculated plants treated with the manufacturer’s prescribed rate. Plant growth, gas exchange parameters, and shoot N content increased quadratically or linearly along with increasing CRF application rates (all P < 0.01). No parameters increased significantly at CRF doses greater than 2.1 g·L−1. Furthermore, the number of nodules per plant decreased quadratically (P = 0.0001) with increasing CRF application rates and nodule formation were completely inhibited at 2.9 g·L−1 CRF or by NH4NO3 at 2 mm. According to our results, nodulation of S. ×utahensis ‘Torrey’ was sensitive to N in the nutrient solution or in increasing CRF levels. Furthermore, plant growth, number of shoots, leaf area, leaf dry weight, stem dry weight, root dry weight, and N content of shoots of inoculated S. ×utahensis ‘Torrey’ plants treated with 2.1 g·L−1 CRF were similar to those of uninoculated plants treated with the manufacturer’s prescribed rate. Our results show that S. ×utahensis ‘Torrey’ plants inoculated with soil containing Frankia need less CRF than the prescribed rate to maintain plant quality, promote nodulation for N2 fixation, and reduce N leaching.


HortScience ◽  
2000 ◽  
Vol 35 (7) ◽  
pp. 1249-1252 ◽  
Author(s):  
Arleen Godoy ◽  
Janet C. Cole

Commercially propagated `Halward's Silver' spirea (Spiraea nipponica Maxim.) bareroot cuttings and cuttings with substrate around the roots (plugs) were transplanted into 3.8-L containers and fertilized with various P fertilizers to determine the effect of fertilizer source on P leaching and plant growth. The following fertilizer treatments were applied: 1) 100% of the recommended rate of P from controlled-release fertilizer (CRF), consisting of 22N-2.6P-10K; 2) 100% of P from triple superphosphate (TSP, 0N-20P-0K) with N and K provided by 22N-0P-10K CRF; and 3) 50% of P from CRF, consisting of 22N-1.3P-10K, plus 50% of P from TSP (CRF/TSP). The most P leached from cuttings transplanted as plugs or bareroot and fertilized with TSP, while the least P leached from cuttings transplanted as plugs and fertilized with CRF or CRF/TSP. Plants fertilized with CRF/TSP generally had larger root dry weights than did plants fertilized with CRF or TSP. Plants fertilized with CRF had the smallest stem dry weights. Shoot-to-root (S/R) ratio was largest in plants transplanted as plugs in substrate amended with TSP, but cuttings transplanted bareroot into CRF-amended substrate had the highest S/R ratio and the lowest stem P concentration. Incorporation of CRF/TSP into the container substrate can reduce P leaching compared with incorporation of TSP, and can increase root and stem dry weights of plants transplanted as plugs compared with incorporation of CRF.


2020 ◽  
Vol 8 (3) ◽  
pp. 125 ◽  
Author(s):  
Oscar José Smiderle ◽  
Aline Das Graças Souza ◽  
Renata Diane Menegatti

The use of controlled-release fertilizers is a promising alternative for supplying nutrients during the initial growth of nursery seedlings. The aim of this study was to verify the effects of different doses of controlled-release fertilizer (CRF) on initial growth and nutritional status in seedlings of Anonna cacans Warm. The seeds were originally sown in a seedbed and then, after initial seedling development, were transplanted into polyethylene bags containing a substrate of washed medium sand, to which different doses of CRF had been added before transplanting. The experimental design was completely randomised, with four treatments, five doses of Osmocote® NPK 19-06-10 formulation (0, 1, 2, 4 and 8 g L-1 of substrate), with four replications, each replication comprising three seedlings (one in each container). Increases in root-collar diameter and plant height were determined throughout the experimental period (6 months) from data collected every 30 days after transplanting. At the end of the experiment the following were evaluated: height, root-collar diameter, N concentration, chlorophyll index, chlorophyll concentration (a, b and total) and leaf area. Root-collar diameter and height showed a positive linear response to increases in the fertilizer dose. From a 4 g L-1 dose of CRF, the nutrient supply added to the substrate of medium sand optimises the initial phase of plant growth and guarantees the adequate nutritional status of Anonna cacans, and can be suggested as a viable technique for use in forest nurseries, and one which results in efficient use of the input material and avoids fertilizer wastage.


1998 ◽  
Vol 16 (3) ◽  
pp. 176-181
Author(s):  
Kelly M. Groves ◽  
Stuart L. Warren ◽  
Ted E. Bilderback

Abstract An experiment with four volumes of irrigation and five controlled-release fertilizers (CRFs) was conducted to evaluate effects on plant growth and mineral nutrient content. Rooted cuttings of Cotoneaster dammeri ‘Skogholm’ and seedlings of Rudbeckia fulgida ‘Goldsturm’ were grown in 3.8 liter (4 qt) containers in a pine bark:sand substrate (8:1, by vol) incorporated with 3.5 g (0.12 oz) N per container with one of the following five CRFs: Meister 21N–3.5P–11.1K (21–7–14), Osmocote 24N–2.0P–5.6K (24–4–7), Scotts 23N–2.0P–6.4K (23–4–8), Sustane 5N–0.9P–3.3K (5–2–4) or Woodace 21N–3.0P–9.5K (21–6–12). Irrigation volumes of 200 ml (0.3 in), 400 ml (0.6 in), 800 ml (1.1 in), or 1200 ml (1.7 in) were applied once daily (single) or in two equal applications with a two hr interval between irrigation allotments (cyclic). All measured variables were unaffected by irrigation application (cyclic or single). Top dry weight of cotoneaster increased quadratically with increasing irrigation volume for all CRFs. Maximum top dry weight was obtained with 612 ml (0.8 in), 921 ml (1.3 in), 928 ml (1.3 in), 300 ml (0.6 in), or 909 ml (1.3 in) for plants fertilized with Meister, Osmocote, Scotts, Sustane, and Woodace, respectively. Osmocote, Scotts, and Woodace produced 90% of maximum top weight over a wide range of irrigation volumes [≈ 550 ml (0.8 in) to 1200 ml (1.5 in)]. Stomatal conductance of cotoneaster fertilized with Osmocote 24–4–7 increased linearly with increasing volume of irrigation, whereas net photosynthetic rate increased quadratically and was highest at 800 ml (1.1 in). All CRFs, excluding Sustane, had similar dry weights when irrigated with 200 ml (0.3 in). At 800 ml (1.1 in) and 1200 ml (1.7 in), cotoneaster fertilized with Osmocote 24–4–7 and Scotts 23–4–8 produced greater top dry weight compared to Meister, Sustane, and Woodace. Top dry weight of rudbeckia increased quadratically with increasing irrigation volume regardless of CRFs. Maximum dry weight was produced with 1160 ml, 931 ml, 959 ml, 1091 ml, or 1009 ml for plants grown with Meister, Osmocote, Scotts, Sustane, or Woodace, respectively. Ninety percent of the maximum top dry weight of both species within each CRF could be obtained with a 40% reduction in irrigation volume. Nitrogen content of cotoneaster and rudbeckia were unaffected by irrigation volume, whereas P and K content, depending upon CRF and plant, was reduced at low irrigation volumes.


2015 ◽  
Vol 33 (2) ◽  
pp. 58-65
Author(s):  
G.A. Andiru ◽  
C.C. Pasian ◽  
J.M. Frantz

Bedding impatiens plants were grown with a 16N-3.9P-10K controlled-release-fertilizer (CRF) of 5–6 or 8–9 month longevities placed at four positions in the container: top-dressed, incorporated, top-one-third, and bottom. These were compared to plants grown with a 20N-4.4P-16.6 water-soluble fertilizer (WSF) at a rate of 150 mg·L−1 nitrogen (N) (150 ppm N). All treatments received the same volume of tap water (CRF treatments) or fertilizer solution (WSF treatment), which was enough to achieve a 20 to 30% leaching fraction. Leachates were collected and measured at each irrigation and the concentrations of N, phosphorous (P), and potassium (K) were measured. Shoot dry weight (SDW) and canopy cover (CC) were also determined. Fertilizing with WSF produced plants of similar size as CRF treatments. CRF applied at the bottom of the substrate leached the highest amount of N among all treatments. Higher concentrations for most nutrients were measured in the leachates from containers treated with 5–6 month CRF during the first 20 d after planting than the next 23 to 34 days. The higher levels of nutrients in the leachates observed within two weeks after planting does not support the use of 5–6 month CRF at the application rates used in this experiment with short-cycle plants such as bedding plants in compared to use of WSF. Except for the bottom placement treatment, the use of 8–9 month CRF resulted in generally less nutrients leached than WSF.


HortScience ◽  
2020 ◽  
Vol 55 (10) ◽  
pp. 1683-1691
Author(s):  
Fernanda Trientini ◽  
Paul R. Fisher

Small-scale hydroponics is a growing urban horticulture trend, but nutrient solution management remains a challenge for small growers. The objective was to investigate the potential to use controlled-release fertilizer (CRF) to simplify nutrient management in small-scale hydroponic systems. Three experiments were conducted with the goal of a single fertilizer application during the crop cycle of basil (Ocimum basilicum). Nutrient release curves were quantified by adding prills to water and measuring nutrient content weekly in the solution for CRF products without plants. In all seven products tested (Osmocote Bloom 2–3M, Osmocote Plus 3–4M, E-Max Calcium Nitrate 2–3M, Agrocote MAP 3–4M, E-Max Keiserite 3–4M, E-Max K-Mag 2–3M, and Agrocote SOP 3–4M) an initial rapid release was followed by a plateau, but release rates differed between products varying from 100% (MgSO4) to 60% release [(NH4).(H2PO4)] over an 11-week evaluation period. Total nutrient content in two commercial N–P–K CRF products (3–4 months 15N–3P–10K and 2–3 months 12N–3.1P–14.9K) provided lower Ca and Mg compared with a typical hydroponic solution based on water-soluble fertilizer (WSF). A subsequent experiment evaluated plant growth response using the same two commercial CRF products (single application) or a WSF (replaced weekly) in growth chamber environment. Plants grown for 4 weeks under CRF treatments yielded less than half the shoot fresh weight of plants grown with WSF and exhibited symptoms of Ca deficiency and micronutrient toxicity (confirmed with tissue analysis). Electrical conductivity (EC) of CRF solutions increased over time indicating excess dose compared with plant uptake, reaching a maximum of 5.4 dS·m−1. Nutrient release curves from the first experiment were then used to estimate product release and create a single-application nutritional program based on a customized “Blend” developed from CRF macronutrients plus WSF micronutrients. Plants were grown hydroponically with two dosages of Blend (1X and 2X) and compared with a commercial WSF with weekly replacement of solution. Blend 2X and WSF treatments had similar shoot fresh weight (241 and 244 g/four plants, respectively) with healthy plant appearance and tissue nutrient levels generally within published survey ranges for basil. Commercial CRF products designed for soil or container production were unsuitable for hydroponics, but acceptable plant performance with the customized CRF Blend demonstrated proof-of-concept for a single CRF application.


1999 ◽  
Vol 9 (2) ◽  
pp. 206-209 ◽  
Author(s):  
Kimberly A. Klock-Moore ◽  
Timothy K. Broschat

Growth of hand-watered and subirrigated `Ultra Red' petunia (Petunia ×hybrida Hort.) and `Super Elfin Violet' impatiens (Impatiens wallerana Hook.f.) plants were compared when grown using four controlled-release fertilizer rates and four fertilizer placements in the pot. Furthermore, the amount of NO3-N leached from hand-watered plants was compared to amount captured by subirrigation system. Before planting, Osmocote (14N-6.2P-11.6K) (4 month release) was either topdressed (TD), layered in the middle of the pot (M), layered at the bottom of the pot (B), or incorporated throughout (I) the substrate at 1.25, 2.5, 5.0, or 7.5 kg·m-3 (oz/ft3). Shoot dry mass of petunia plants was similar between both irrigation systems and among the four fertilizer placements. Subirrigated petunias fertilized with 2.5 kg·m-3 had similar shoot dry mass as hand-watered petunias fertilized with 7.5 kg·m-3. Hand-watered impatiens had greater shoot dry mass than subirrigated impatiens. Hand-watered impatiens also had greater shoot dry mass in pots with fertilizer at TD, M, or I than with fertilizer at B, but no difference in growth was observed in subirrigated impatiens among the different fertilizer placements. Finally, significantly more NO3-N was leached from hand-watered plants than was captured with the subirrigation systems.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1060A-1060
Author(s):  
C. Chong ◽  
P. Purvis ◽  
G. Lumis ◽  
B. E. Holbein ◽  
R. P. Voroney ◽  
...  

Wastewaters from farm and composting operations are often rich in certain nutrients that can be reutilized in crop production. Liners of silverleaf dogwood (CornusalbaL. `Argenteo-marginata'), common ninebark [Physocarpusopulifolius(L.) Maxim.], and `Anthony Waterer' spirea (Spiraea×bumaldaBurvenich) were grown in 6-L containers filled with a medium consisting of 73% bark, 22% peat, and 5% pea gravel, by volume. Plants were fertigated daily via a computer-controlled multi-fertilizer injector with three recirculated fertilizer treatments: 1) a stock solution with macro- and micronutrients, electrical conductivity (EC) 2.2 dS·m-1; 2) wastewater from a mushroom farm; and 3) process wastewater from anaerobic digestion of municipal solid waste. The wastewaters used in both treatments 2 and 3 were diluted with tap water, and the computer was programmed to amend, dispense, and recirculate nutrients, based on the same target EC as in treatment 1. For comparison, there was a traditional controlled-release fertilizer treatment [Nutryon 17–5–12 (17N–2P–10K) plus micronutrients incorporated into the medium at a rate of 6.5 kg·m-1, nutrients not recirculated]. All three species responded similarly to the three recirculated fertilizer treatments. Growth in the recirculated treatments was similar and significantly higher than that obtained with controlled-release fertilizer. A similar trend in EC was observed in the media near harvest. Throughout the study, there was no sign of nutrient toxicity or deficiency with any of the species or treatment.


Sign in / Sign up

Export Citation Format

Share Document