scholarly journals Potential Use of Rice Husk Biochar and Compost to Improve P Availability and Reduce GHG Emissions in Acid Sulfate Soil

Agronomy ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 685
Author(s):  
Nguyen Thi Kim Phuong ◽  
Chau Minh Khoi ◽  
Karl Ritz ◽  
Nguyen Van Sinh ◽  
Mitsunori Tarao ◽  
...  

Acid sulfate soil (ASS) has major problems related to phosphorus deficiency and high potential for N2O emissions, as well as strong acidity. The objective of this study was to evaluate the effects of rice husk biochar and compost on P availability and greenhouse gas (GHG) emissions in ASS in in vitro incubation studies. An ASS was amended with two types of rice husk biochar (at rates of 0 g kg−1, 20 g kg−1, and 50 g kg−1, equivalent to 0 Mg ha−1, 20 Mg ha−1, and 50 Mg ha−1, assuming that bulk density was 1 g cm−3 and evenly applied for 10 cm in depth) and compost (at rates of 0 g kg−1, 10 g kg−1, and 20 g kg−1, equivalent to 0 Mg ha−1, 10 Mg ha−1, and 20 Mg ha−1) and incubated. Application of compost increased labile P by 100% and 200% at rates of 10 g kg−1 and 20 g kg−1, respectively. Both biochars showed an increase in NaHCO3-soluble inorganic P by 16% to 30%, decreases in NaOH-soluble inorganic P and NaHCO3-soluble organic P. N2O emissions were significantly decreased by 80% by a biochar with a higher surface area and higher NH4+ adsorption capacity at a rate of 50 g kg−1 as compared with those in un-amended soil. In contrast, compost amendment at a rate of 10 g kg−1 significantly increased N2O emission by 150%. These results suggest that in ASS, whilst compost is more effective in improving P availability, biochar is more effective in mitigating GHG emissions, emphasizing that fundamental characteristics of organic amendments influenced the outcomes in terms of desirable effects.

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 1128
Author(s):  
Nam Tran Sy ◽  
Thao Huynh Van ◽  
Chiem Nguyen Huu ◽  
Cong Nguyen Van ◽  
Tarao Mitsunori

Background: Biochar is a promising material in mitigating greenhouse gases (GHGs) emissions from paddy fields due to its remarkable structural properties. Rice husk biochar (RhB) and melaleuca biochar (MB) are amendment materials that could be used to potentially reduce emissions in the Vietnamese Mekong Delta (VMD). However, their effects on CH4 and N2O emissions and soil under local water management and conventional rice cultivation have not been thoroughly investigated. Methods: We conducted a field experiment using biochar additions to the topsoil layer (0-20 cm). Five treatments comprising 0 t ha-1 (CT0); 5 t ha-1 (RhB5) and 10 t ha-1 (RhB10), and 5 t ha-1 (MB5) and 10 t ha-1 (MB10) were designed plot-by-plot (20 m2) in triplicates. Results: The results showed that biochar application from 5 to 10 t ha-1 significantly decreased cumulative CH4 (24.2 – 28.0%, RhB; 22.0 – 14.1%, MB) and N2O (25.6 – 41.0%, RhB; 38.4 – 56.4%, MB) fluxes without a reduction in grain yield. Increasing the biochar application rate further did not decrease significantly total CH4 and N2O fluxes but was seen to significantly reduce the global warming potential (GWP) and yield-scale GWP in the RhB treatments. Biochar application improved soil Eh but had no effects on soil pH. Whereas CH4 flux correlated negatively with soil Eh (P < 0.001; r2 = 0.552, RhB; P < 0.001; r2 = 0.502, MB). The soil physicochemical properties of bulk density, porosity, organic matter, and anaerobically mineralized N were significantly improved in biochar-amended treatments, while available P also slightly increased. Conclusions: Biochar supplementation significantly reduced CH4 and N2O fluxes and improved soil mineralization and physiochemical properties toward beneficial for rice plant. The results suggest that the optimal combination of biochar-application rates and effective water-irrigation techniques for soil types in the MD should be further studied in future works.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1100
Author(s):  
Qurban Ali Panhwar ◽  
Umme Aminun Naher ◽  
Jusop Shamshuddin ◽  
Mohd Razi Ismail

A study was conducted to evaluate the effects of applying rice husk biochar (RHB) or ground magnesium limestone (GML) in combination with bio-fertilizer on soil biochemical properties and the yield of rice planted on an acid sulfate soil. The RHB or GML plus bio-fertilizer were applied each at the rate of 4 t ha−1. Applying the amendments increased soil pH (>5.0) and improved soil biochemical properties with a concomitant reduction of Al and Fe that resulted in enhanced rice growth. Applying GML plus bio-fertilizer resulted in increased soil N content (0.20%), available P (34.38 mg kg−1), exchangeable Ca (2.97 cmolc kg−1) and exchangeable Mg (2.45 cmolc kg−1); all these enhanced rice nutrient uptake. The highest bacterial population of 8.34 log10 CFU g−1 soil was found in the same treatment. Applying GML and RHB alone, or in combination with bio-fertilizer, was found to enhance rice growth and the yield. The highest plant height (90.33 cm), leaf chlorophyll content (38.05), plant tiller numbers (16), filled grains (86%), number of panicles per plant (18), lengths of panicles (24.40 cm), grain (5.24 t ha−1), straw yield (10.20 t ha−1) and harvest index (0.51) were determined in the GML plus bio-fertilizer, followed by RHB plus bio-fertilizer treatment. Thus, GML applied in combination with bio-fertilizer is considered as a promising agronomic package to sustain the production of rice planted on acid sulfate soils.


Soil Research ◽  
2004 ◽  
Vol 42 (6) ◽  
pp. 693 ◽  
Author(s):  
Do Thi Thanh Ren ◽  
Tran Kim Tinh ◽  
Nguyen Thi Ngoc Minh ◽  
Tran Ba Linh

In order to improve the yield of rice cultivated on acid sulfate soil, 2 field experiments and 1 pot experiment were conducted continuously for 5 and 2 crops, respectively (1997–2000), in Tri Ton district, An Giang province, Vietnam. Soil for the pot experiment was taken from the 2 field experiments to study the residual effect on phosphorus availability. Both organic and inorganic phosphorus had a possitive effect on the rice yield. Compared with the treatments being fertilised at the same doses of P, a significantly higher yield was obtained in the treatment of mixed inorganic P fertiliser and manure. This effect was found only in the first crop. From the second crop onward, rice yields were not different among treatments (mixed fertilisers, inorganic P fertiliser, and manure only). Manure-only treatment resulted in rice yield equal to the treatment with 60 kg P2O5 in the form of superphosphate. Supplying phosphorus in both organic and inorganic forms over several crops resulted in an accumulation of phosphorus in soil, which became available for rice growth in the following crop season. Adding P fertiliser modified the P fraction in acid sulfate soil mainly to the form of Fe-P.


2009 ◽  
Vol 4 (1) ◽  
pp. 125
Author(s):  
Akhmad Mustafa ◽  
Rachmansyah Rachmansyah ◽  
Dody Dharmawan Trijuno ◽  
Ruslaini Ruslaini

Rumput laut (Gracilaria verrucosa) telah dibudidayakan di tambak tanah sulfat masam dengan kualitas dan kuantitas produksi yang relatif tinggi. Oleh karena itu, dilakukan penelitian yang bertujuan untuk mengetahui peubah kualitas air yang mempengaruhi laju pertumbuhan rumput laut di tambak tanah sulfat masam Kecamatan Angkona Kabupaten Luwu Timur Provinsi Sulawesi Selatan. Pemeliharaan rumput laut dilakukan di 30 petak tambak  terpilih selama 6 minggu. Bibit rumput laut dengan bobot 100 g basah ditebar dalam hapa berukuran 1,0 m x 1,0 m x 1,2 m. Peubah tidak bebas yang diamati adalah laju pertumbuhan relatif, sedangkan peubah bebas adalah peubah kualitas air yang meliputi: intensitas cahaya, salinitas, suhu, pH, karbondioksida, nitrat, amonium, fosfat, dan besi. Analisis regresi berganda digunakan untuk menentukan peubah bebas yang dapat digunakan untuk memprediksi peubah tidak bebas. Hasil penelitian menunjukkan bahwa laju pertumbuhan relatif rumput laut di tambak tanah sulfat masam berkisar antara 1,52% dan 3,63%/hari dengan rata-rata 2,88% ± 0,56%/hari. Di antara 9 peubah kualitas air yang diamati ternyata hanya 5 peubah kualitas air yaitu: nitrat, salinitas, amonium, besi, dan fosfat yang mempengaruhi pertumbuhan rumput laut secara nyata. Untuk meningkatkan pertumbuhan rumput laut di tambak tanah sulfat masam Kecamatan Angkona Kabupaten Luwu Timur dapat dilakukan dengan pemberian pupuk yang mengandung nitrogen untuk meningkatkan kandungan amonium dan nitrat serta pemberian pupuk yang mengandung fosfor untuk meningkatkan kandungan fosfat sampai pada nilai tertentu, melakukan remediasi untuk menurunkan kandungan besi serta memelihara rumput laut pada salinitas air yang lebih tinggi, tetapi tidak melebihi 30 ppt.Seaweed (Gracilaria verrucosa) has been cultivated in acid sulfate soil-affected ponds with relatively high quality and quantity of seaweed production. A research has been conducted to study water quality variables that influence the growth of seaweed in acid sulfate soil-affected ponds of Angkona Sub-district East Luwu Regency South Sulawesi Province. Cultivation of seaweed was done for six weeks in 30 selected brackishwater ponds. Seeds of seaweed with weight of 100 g were stocked in hapa sized 1.0 m x 1.0 m x 1.2 m. Dependent variable that was observed was specific growth rate, whereas independent variables were water quality variables including light intensity, salinity, temperature, pH, carbondioxide, nitrate, ammonium, phosphate, and iron. Analyses of multiple regressions were used to determine the independent variables which could be used to predict the dependent variable. Research result indicated that relative growth rate of seaweed in acid sulfate soils-affected brackishwater ponds ranged from 1.52% to 3.63%/day with 2.88% ± 0.56%/day in average. Among nine observed water quality variables, only five variables namely: nitrate, salinity, ammonium, phosphate and iron influence significantly on the growth of seaweed in acid sulfate soils-affected brackishwater ponds. The growth of seaweed in acid sulfate soils-affected brackishwater ponds of Angkona District East Luwu Regency, can be improved by using nitrogen-based fertilizers to increase ammonium and nitrate contents and also fertilizers which contain phosphorus to improve phosphate content to a certain level. Pond remediation to decrease iron content and also rearing seaweed at higher salinity (but less than 30 ppt) can also be alternatives to increase the growth of seaweed.


Author(s):  
Daljit Singh KARAM ◽  
Prakash NAGABOVANALLI ◽  
Keeren Sundara RAJOO ◽  
Che Fauziah ISHAK ◽  
Arifin ABDU ◽  
...  

2015 ◽  
Vol 32 ◽  
pp. 178-186 ◽  
Author(s):  
Lakshmi Prasanna Lingamdinne ◽  
Hoon Roh ◽  
Yu-Lim Choi ◽  
Janardhan Reddy Koduru ◽  
Jae-Kyu Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document