scholarly journals Discovery of Four Novel ORFs Responsible for Cytoplasmic Male Sterility (CMS) in Cotton (Gossypium hirsutum L.) through Comparative Analysis of the Mitochondrial Genomes of Four Isoplasmic Lines

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 765
Author(s):  
Min Li ◽  
Li Chen ◽  
Danfeng Tang ◽  
Xiaofang Liao ◽  
Xiangjun Kong ◽  
...  

Cytoplasmic male sterility (CMS) is an important feature for achieving heterosis in the development of hybrid crops. Mitochondria contribute to CMS, especially via mitochondrial DNA (mtDNA) rearrangements and chimeric genes. However, the mechanisms of CMS have not been fully elucidated, and the isonuclear alloplasmic lines used in previous studies have limited utility in cotton CMS research. In this study, three CMS lines (J4A-1, J4A-2 and J4A-3) and their isoplasmic maintainer line (J4B) were analyzed for mtDNA structural differences via high-throughput sequencing. The results showed that mtDNA was conserved (with similarities higher than 99%) among the three CMS lines and their isoplasmic maintainer line. All lines harbored 36 known protein-coding genes, 3 rRNAs, and 15 tRNAs. The protein-coding genes with non-synonymous mutations mainly encoded two types of proteins: ATPase and ribosomal proteins. Four new open reading frames (ORFs) (orf116b, orf186a-1, orf186a-2 and orf305a) were identified as candidate ORFs responsible for CMS. Two of the ORFs (orf186a-1 and orf186a-2) were identified as orf4 and orf4-2 of the upland cotton CMS line 2074A (a line with Gossypium harknessii Brandegee CMS-D2-2 cytoplasm), respectively. These findings provide a reference for CMS research in cotton or other crops.

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Shi-Fei Sang ◽  
De-Sheng Mei ◽  
Jia Liu ◽  
Qamar U. Zaman ◽  
Hai-Yan Zhang ◽  
...  

Abstract Background Nsa cytoplasmic male sterility (CMS) is a novel alloplasmic male sterility system derived from somatic hybridization between Brassica napus and Sinapis arvensis. Identification of the CMS-associated gene is a prerequisite for a better understanding of the origin and molecular mechanism of this CMS. With the development of genome sequencing technology, organelle genomes of Nsa CMS line and its maintainer line were sequenced by pyro-sequencing technology, and comparative analysis of the organelle genomes was carried out to characterize the organelle genome composition of Nsa CMS as well as to identify the candidate Nsa CMS-associated genes. Results Nsa CMS mitochondrial genome showed a higher collinearity with that of S. arvensis than B. napus, indicating that Nsa CMS mitochondrial genome was mainly derived from S. arvensis. However, mitochondrial genome recombination of parental lines was clearly detected. In contrast, the chloroplast genome of Nsa CMS was highly collinear with its B. napus parent, without any evidence of recombination of the two parental chloroplast genomes or integration from S. arvensis. There were 16 open reading frames (ORFs) specifically existed in Nsa CMS mitochondrial genome, which could not be identified in the maintainer line. Among them, three ORFs (orf224, orf309, orf346) possessing chimeric and transmembrane structure are most likely to be the candidate CMS genes. Sequences of all three candidate CMS genes in Nsa CMS line were found to be 100% identical with those from S. arvensis mitochondrial genome. Phylogenetic and homologous analysis showed that all the mitochondrial genes were highly conserved during evolution. Conclusions Nsa CMS contains a recombined mitochondrial genome of its two parental species with the majority form S. arvensis. Three candidate Nsa CMS genes were identified and proven to be derived from S. arvensis other than recombination of its two parental species. Further functional study of the candidate genes will help to identify the gene responsible for the CMS and the underlying molecular mechanism.


2021 ◽  
Vol 12 ◽  
Author(s):  
Chunbao Zhang ◽  
Fuyou Fu ◽  
Chunjing Lin ◽  
Xiaoyang Ding ◽  
Jingyong Zhang ◽  
...  

Cytoplasmic male sterility (CMS) is an important plant characteristic for exploiting heterosis to enhance crop traits during breeding. However, the CMS regulatory network remains unclear in plants, even though researchers have attempted to isolate genes associated with CMS. In this study, we performed high-throughput sequencing and degradome analyses to identify microRNAs (miRNAs) and their targets in a soybean CMS line (JLCMS9A) and its maintainer line (JLCMS9B). Additionally, the differentially expressed genes during reproductive development were identified using RNA-seq data. A total of 280 miRNAs matched soybean miRNA sequences in miRBase, including mature miRNAs and pre-miRNAs. Of the 280 miRNAs, 30, 23, and 21 belonged to the miR166, miR156, and miR171 families, respectively. Moreover, 410 novel low-abundant miRNAs were identified in the JLCMS9A and JLCMS9B flower buds. Furthermore, 303 and 462 target genes unique to JLCMS9A and JLCMS9B, respectively, as well as 782 common targets were predicted based on the degradome analysis. Target genes differentially expressed between the CMS line and the maintainer line were revealed by an RNA-seq analysis. Moreover, all target genes were annotated with diverse functions related to biological processes, cellular components, and molecular functions, including transcriptional regulation, the nucleus, meristem maintenance, meristem initiation, cell differentiation, auxin-activated signaling, plant ovule development, and anther development. Finally, a network was built based on the interactions. Analyses of the miRNA, degradome, and transcriptome datasets generated in this study provided a comprehensive overview of the reproductive development of a CMS soybean line. The data presented herein represent useful information for soybean hybrid breeding. Furthermore, the study results indicate that miRNAs might contribute to the soybean CMS regulatory network by modulating the expression of CMS-related genes. These findings lay the foundation for future studies on the molecular mechanisms underlying soybean CMS.


2018 ◽  
Author(s):  
Ding Xianlong ◽  
Zhang Hao ◽  
Ruan Hui ◽  
Li Yanwei ◽  
Chen Linfeng ◽  
...  

ABSTRACTCytoplasmic male sterility (CMS) plays an important role in the production of soybean hybrid seeds. MicroRNAs (miRNAs) are a class of non-coding endogenous ~21 nt small RNAs that play crucial roles in flower and pollen development by targeting genes in plants. Here, two small RNA libraries and two degradome libraries were constructed from the flower buds of the soybean CMS line NJCMS1A and its restorer (Rf) line NJCMS1C. Following high-throughput sequencing, 558 known miRNAs, 103 novel miRNAs on the other arm of known pre-miRNAs, 10 novel miRNAs, and a number of base-edited miRNAs were identified. Among the identified miRNAs, 76 differentially expressed miRNAs were discovered with greater than two-fold changes between NJCMS1A and NJCMS1C. By degradome analysis, a total of 466 distinct transcripts targeted by 200 miRNAs and 122 distinct transcripts targeted by 307 base-edited miRNAs were detected. Further integrated analysis of transcriptome and small RNA found some miRNAs and their targets’ expression patterns showing a negative correlation, such as miR156b-GmSPL and miR4413b-GmPPR. Previous reports showed that these targets might be related to flower bud development, suggesting that miRNAs might act as regulators of soybean CMS fertility. These findings may provide a better understanding of the miRNA-mediated regulatory networks in CMS mechanisms of soybean.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ayumu Takatsuka ◽  
Tomohiko Kazama ◽  
Kinya Toriyama

Abstract Background Cytoplasmic male sterility (CMS) is a trait associated with non-functional pollen or anthers, caused by the interaction between mitochondrial and nuclear genes. Findings A Tadukan-type CMS line (TAA) and a restorer line (TAR) were obtained by successive backcrossing between the Oryza sativa cultivars Tadukan (a cytoplasmic donor) and Taichung 65 (a recurrent pollen parent). Using Illumina HiSeq, we determined whole-genome sequences of the mitochondria of TAA and screened the mitochondrial genome for the presence of open reading frame (orf) genes specific to this genome. One of these orf genes, orf312, showed differential expression patterns in TAA and TAR anthers at the meiotic and mature stages, with transcript amounts in TAR being less than those in TAA. The orf312 gene is similar to the previously described orf288, a part of which is among the components comprising WA352, a chimeric CMS-associated gene of wild-abortive-type CMS. Conclusions The orf312 gene is a promising candidate for CMS-associated gene in TAA.


2020 ◽  
Author(s):  
Yanping Tan ◽  
Tong Chen ◽  
Ze Tian ◽  
Jiayang Li ◽  
Xuequn Liu ◽  
...  

Abstract The identification and development of new cytoplasmic male sterility (CMS) lines in higher plants is important for the preservation of grain security and the prevention of homogenization of hybrid rice. Molecular markers assisted selection (MAS) based on CMS-associated genes or mitochondrial-specific chimeric sequences are important for rapid and effective breeding of new CMS lines and hybrids. In our study, the distribution and allele variation of orfH79 and orf290 genes were characterized from 273 wild and cultivated rice in the AA genome species. Based on the alignment of nucleotide and amino acid sequences, four accessions with orfH79 and three accessions with orf290 were screened. Four novel CMS lines carrying orfH79 haplotypes and three novel CMS lines carrying orf290 haplotypes were then developed using multiple backcross generations with a maintainer line under MAS. The breeding process used in our study provides an efficient and feasible approach for selecting new CMS lines. CMS lines selected in our study are important for enriching rice germplasm resources and guaranteeing rice breeding programs.


2012 ◽  
Vol 48 (No. 3) ◽  
pp. 139-142 ◽  
Author(s):  
L. Havlíčková ◽  
V. Čurn ◽  
E. Jozová ◽  
V. Kučera ◽  
M. Vyvadilová ◽  
...  

Until now in Europe has not been cultivated any hybrid cultivar of oilseed rape based on the Shaan 2A cytoplasmic male sterility (CMS), a widely used CMS system in China. The aim of Czech breeders now is to produce new, improved cultivars of rapeseed based on this CMS system. Sterile Shaan 2A CMS line (S; rf/rf), its corresponding maintainers (N; rf/rf) and fertility restorers (S; Rf/Rf) were analyzed on molecular level for the presence of functional CMS cytoplasm. Two new primer pairs covering CMS-associated gene (so called orf224-1) present in Shaan 2A CMS line were developed and selection capability of the developed primers was successfully evaluated. These primers can be used for early selection of plants with functional Shaan 2A CMS system in breeding programmes.


2019 ◽  
Vol 20 (3) ◽  
pp. 578 ◽  
Author(s):  
Peng Wang ◽  
Qiaohua Lu ◽  
Yixin Ai ◽  
Yihao Wang ◽  
Tiantian Li ◽  
...  

Cytoplasmic male sterility (CMS), which is controlled by mitochondrial genes, is an important trait for commercial hybrid seed production. So far, genes controlling this trait are still not clear in pepper. In this study, complete mitochondrial genomes were sequenced and assembled for the CMS line 138A and its maintainer line 138B. The genome size of 138A is 504,210 bp, which is 8618 bp shorter than that of 138B. Meanwhile, more than 214 and 215 open reading frames longer than 100 amino acids (aas) were identified in 138A and 138B, respectively. Mitochondrial genome structure of 138A was quite different from that of 138B, indicating the existence of recombination and rearrangement events. Based on the mitochondrial genome sequence and structure variations, mitochondrion of 138A and FS4401, a Korean origin CMS line, may have inherited from a common female ancestor, but their CMS traits did originate separately. Candidate gene selection was performed according to the published characteristics of the CMS genes, including the presence SNPs and InDels, located in unique regions, their chimeric structure, co-transcription, and transmembrane domain. A total of 35 ORFs were considered as potential candidate genes and 14 of these were selected, with orf300a and 0rf314a as strong candidates. A new marker, orf300a, was developed which did co-segregate with the CMS trait.


Sign in / Sign up

Export Citation Format

Share Document