scholarly journals Securing of an Industrial Soil Using Turfgrass Assisted by Biostimulants and Compost Amendment

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1310 ◽  
Author(s):  
Donato Visconti ◽  
Antonio Giandonato Caporale ◽  
Ludovico Pontoni ◽  
Valeria Ventorino ◽  
Massimo Fagnano ◽  
...  

This work aimed to study the effects of compost (applied at two rates) and two commercial microbial biostimulants on the mobility and bioavailability of potentially toxic elements (PTEs) in an industrial soil phytostabilized by Dactylis glomerata L. or a mixed stand of grasses (Lolium perenne L., Poa pratensis L. and Festuca arundinacea Shreb.). The soil showed very high pseudototal and bioavailable concentrations of cadmium (Cd) and lead (Pb), due to improper lead-acid batteries storage. Compost amendment in combination with the two biostimulants produced the best outcomes in terms of plant growth and nutrient uptake. The same mix of beneficial microbes improved soil biological fertility enhancing soil nitrogen fixing and ammonia oxidizing bacteria, while reduced the pore water and NH4NO3 extractable concentrations of Cd and at lower extent of Pb in soil. Accordingly, the lower mobility and bioavailability of Cd in soil determined a lower uptake and accumulation of Cd in shoots of different grass species. Our results suggest that a green cap with turfgrass assisted by biostimulants and compost amendment in PTE-contaminated industrial sites could be a reliable and effective practice to protect and restore soil biological fertility and to reduce the risk of PTE dispersion in the surrounding environment.

1990 ◽  
Vol 115 (4) ◽  
pp. 608-611 ◽  
Author(s):  
Jennifer M. Johnson-Cicalese ◽  
C.R. Funk

Studies were conducted on the host plants of four billbug species (Coleoptera:Curculionidae: Sphenophorus parvulus Gyllenhal, S. venatus Chitt., S. inaequalis Say, and S. minimus Hart) found on New Jersey turfgrasses. A collection of 4803 adults from pure stands of various turfgrasses revealed all four billbugs on Kentucky bluegrass (Poa pratensis L.), tall fescue (Festuca arundinacea Schreb.), and perennial ryegrass (Lolium perenne L.), and S. parvulus, S. venatus, and S. minimus on Chewings fescue (F. rubra L. ssp. commutata Gaud.). Since the presence of larvae, pupae, or teneral adults more accurately indicates the host status of a grass species, immature billbugs were collected from plugs of the various grass species and reared to adults for identification. All four species were reared from immature billbugs found in Kentucky bluegrass turf; immatures of S. venatus, S. inaequalis, and S. minimus were found in tall fescue; S. venatus and S. minimus in perennial ryegrass; and S. inaequalis in strong creeping red fescue (F. rubra L. ssp. rubra). A laboratory experiment was also conducted in which billbug adults were confined in petri dishes with either Kentucky bluegrass, perennial ryegrass, tall fescue, or bermudagrass (Cynodon dactylon Pers.). Only minor differences were found between the four grasses in billbug survival, number of eggs laid, and amount of feeding. In general, bermudagrass was the least favored host and the other grasses were equally adequate hosts. The results of this study indicate a need for updating host-plant lists of these four billbug species.


2020 ◽  
Vol 12 (6) ◽  
pp. 2160 ◽  
Author(s):  
José Marín ◽  
Salima Yousfi ◽  
Pedro V. Mauri ◽  
Lorena Parra ◽  
Jaime Lloret ◽  
...  

Grasslands have a natural capacity to decrease air pollution and a positive impact on human life. However, their maintenance requires adequate irrigation, which is difficult to apply in many regions where drought and high temperatures are frequent. Therefore, the selection of grass species more tolerant to a lack of irrigation is a fundamental criterion for green space planification. This study compared responses to deficit irrigation of different turfgrass mixtures: a C4 turfgrass mixture, Cynodon dactylon-Brachypodium distachyon (A), a C4 turfgrass mixture, Buchloe dactyloides-Brachypodium distachyon (B), and a standard C3 mixture formed by Lolium perenne-Festuca arundinacea-Poa pratensis (C). Three different irrigation regimes were assayed, full irrigated to 100% (FI-100), deficit irrigated to 75% (DI-75), and deficit irrigated to 50% (DI-50) of container capacity. Biomass, normalized difference vegetation index (NDVI), green area (GA), and greener area (GGA) vegetation indices were measured. Irrigation significantly affected the NDVI, biomass, GA, and GGA. The most severe condition in terms of decreasing biomass and vegetation indices was DI-50. Both mixtures (A) and (B) exhibited higher biomass, NDVI, GA, and GGA than the standard under deficit irrigation. This study highlights the superiority of (A) mixture under deficit irrigation, which showed similar values of biomass and vegetation indices under full irrigated and deficit irrigated (DI-75) container capacities.


2000 ◽  
Vol 40 (2) ◽  
pp. 299 ◽  
Author(s):  
J. M. Virgona ◽  
A. Bowcher

The response to variation in grazing interval over the spring–autumn period in southern New South Wales was examined on 4 perennial grass species over 2 years. Plots of phalaris (Phalaris aquatica L. cv. Sirolan), cocksfoot (Dactylis glomerata L. cv. Porto), tall fescue (Festuca arundinacea Shreb cv. Demeter) and a native danthonia (Danthonia richardsonii cv. Taranna), were grazed by sheep every 2, 5 or 8 weeks, either rainfed or given supplementary irrigation. Basal cover was monitored over this period and is combined with measurements of phenological development and herbage mass to explain differences in persistence. The seasons differed with respect to rainfall, 1994–95 being dry compared to 1995–96. Over the 1994–95 season, the relative change in basal cover [RCBC, the ratio of final (May 1995) to initial (September 1994) basal cover] of the 3 introduced perennial grasses was significantly less than 1, which indicated a decline in basal cover over the measurement period. In contrast, RCBC was 1.55 for danthonia. Grazing interval treatments significantly affected RCBC in 1994–95, RCBC increasing with grazing interval. In the 8-week grazing interval, RCBC did not significantly differ from 1. Changes in density were also measured in 1994–95 and followed a similar pattern to RCBC for species effects although there was no significant effect of grazing interval. In 1995–96, there were interactions between watering and both species and grazing interval. The RCBC (September 1995–May 1996) was significantly greater than 1 for cocksfoot and tall fescue under irrigated conditions but not under rainfed conditions. The response to grazing interval depended on water supply. The 5-week grazing interval led to the highest RCBC under both rainfed and irrigated conditions. However, when rainfed, the 5- and 8-week treatments were not significantly different, whereas under irrigation, the 2- and 5-week treatments did not significantly differ. For the 1995–96 season, a movement index (MI, ratio of newly colonised area to that occupied throughout the season) was measured. There was a strong interaction between species and watering but phalaris was the most mobile (highest MI) of the 4 species under both rainfed and irrigated conditions. The absence of any interaction between species and grazing interval in either 1994–95 or 1995–96 suggests that response to grazing of these species may be similar despite differences in survival mechanisms.


2002 ◽  
Vol 82 (1) ◽  
pp. 89-92 ◽  
Author(s):  
J. R. Moyer ◽  
A. L. Boswall

Foxtail barley (Hordeum jubatum L.) is a troublesome weed in irrigated pastures. Several grass species seeded on two irrigated pastures at Lethbridge to test their ability to compete with foxtail barley. Tall fescue (Festuca arundinacea Schreb.) and creeping foxtail (Alopecurus arundinaceus Poir) reduced foxtail barley groundcover significantly compared to orchardgrass (Dactylis glomerata L.), pubescent wheatgrass (Agropyron trichophorum (Link) Richt.) and western wheatgrass (Agropyron smithii Rydb.); therefore, seeding of these grasses in areas subject to foxtail barley invasion should be encouraged. Key words: Foxtail barley, tall fescue, creeping foxtail, wet soils, salinity, weed suppression


HortScience ◽  
2010 ◽  
Vol 45 (4) ◽  
pp. 650-653 ◽  
Author(s):  
Mark G. Lefsrud ◽  
John C. Sorochan ◽  
Dean A. Kopsell ◽  
J. Scott McElroy

Heat-tolerant bluegrass varieties were developed to resist dormancy and retain pigmentation during heat stress events. The objective of this study was to investigate the influence of grass species, nitrogen (N) fertilization, and seasonality on the accumulation patterns of lutein, β-carotene, and chlorophyll a and b in the leaf tissues of turfgrass. The heat-tolerant bluegrass cultivars Dura Blue and Thermal Blue (Poa pratensis L. × Poa arachnifera Torr.), Apollo kentucky bluegrass (Poa pratensis L.), and Kentucky 31 tall fescue (Festuca arundinacea Schreb.) were compared for the accumulation of plant pigments. Evaluations were conducted over 2 consecutive years (Years 4 and 5 after establishment) during two different seasons (spring and summer) and under varying N fertilization. Fertilizer applications of 5, 14, and 27 g N/m2/year resulted in a significant positive correlation for the accumulation of leaf blade lutein and chlorophyll a and b, but not for β-carotene. The accumulation of the four measured plant pigments among the grasses was significantly different with ‘Apollo’ having the largest concentration of pigments followed by ‘Dura Blue’, ‘Thermal Blue’, and finally ‘Kentucky 31’. Specifically, when comparing the cultivars Apollo and Kentucky 31, the pigment levels decreased 27%, 26%, 26%, and 23% for lutein, β-carotene, and chlorophyll a and b, respectively. The interesting observation of the analysis of the grass pigment concentrations was that the least reported heat-tolerant cultivar in our study (‘Apollo’) had the largest measured pigment concentrations.


1971 ◽  
Vol 51 (6) ◽  
pp. 485-490 ◽  
Author(s):  
W. E. CORDUKES ◽  
E. V. PARUPS

Twelve cultivars representing eight grass species were each grown in a sand/vermiculite medium in the greenhouse, fed six solutions varying in chloride content for 140 days, and cut at lawn height. Six harvests were obtained and analyzed for chloride uptake. Visual ratings and yields indicated that the grasses tolerate relatively high chloride levels for a considerable time. Chloride uptake increased with time and increasing chloride content of the solutions. Uptake was less from alkaline than from acid solutions. Highland bentgrass (Agrostis tenuis Sibth.), Italian ryegrass (Lolium multiflorum Lam.) and timothy (Phleum pratense L.) were the least tolerant, while Norlea perennial ryegrass (Lolium perenne L.) and Kentucky 31 tall fescue (Festuca arundinacea Schreb.) were the most tolerant to chlorides. Kentucky bluegrass (Poa pratensis L.) and creeping red fescue (Festuca rubra L.) were intermediate in this respect.


Author(s):  
Josef Ambruz ◽  
Stanislav Hejduk

The most frequent way to establish turfgrass in the climatic conditions of the Czech Republic is sowing during spring period. The seedlings are endangered by lack of soil moisture and by high temperatures if irrigation is no available. One of the possibilities how to increase probability of successful turfgrass establishment in warm areas which suffer by low amount of precipitation is autumn term of sowing.Eight grass species and subspecies and two legumes were sown in three autumn terms (September, October and November) during 2009 and 2010. The shortest time for seedling emergence was found in average of all terms atMedicago lupulinaandTrifolium repens(9 days).Lolium perenne(14)and Festuca arundinacea(17) were the fastest emerged grasses. On the other hand the longest emergence time was realised atPoa pratensis(23),Festuca rubra ssp. trichophyla(22)andFestuca ovina(21). Plants sown in September emerged in 10 days, in October 12 and in November in 29 days. September term was suitable for all used species but November term underwent most successfullyFestuca rubrassp.commutata(23% soil cover in April next year)andLolium perenne(19%). November term was not acceptable for legumes.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 540
Author(s):  
Talea Becker ◽  
Johannes Isselstein ◽  
Rena Jürschik ◽  
Matthias Benke ◽  
Manfred Kayser

In future, grass swards need to be adapted to climate change and interactions of management and site are becoming more important. The persistence of Lolium perenne on peatland or during dry periods is limited and alternative forage species are required. We tested the performance of a modern variety of Festuca arundinacea and Phleum pratense as an alternative to Lolium perenne on clay, peat, and sandy soils. Each of these grasses was sown as main species in mixture with Poa pratensis and Trifolium repens and the mixtures were subjected to different frequencies of defoliation. Differences in yield proportions in the third year were significantly influenced by main species, site and their interaction. Remaining mass proportions of main species after three years were smallest on peat; on all sites Festuca arundinacea showed the highest persistence and largest yield, followed by Lolium perenne. Mass proportions of Phleum pratense were small on peat soils and Phleum had been replaced there by Holcus lanatus, and by Lolium perenne and Poa pratensis on the clay and sandy soils. We conclude that the choice of grass species in mixtures is a management tool to control stability and productivity of grass swards under specific site conditions.


2020 ◽  
pp. 160-168
Author(s):  
I. Senyk

Botanical composition of grasses is one of the most important indicators the biological value and quality of the obtained hay and pasture forage, the longevity of hayfi elds and pastures depend on. The issue of changing the botanical composition of agrophytocenoses is especially important in the context of global climate change, which in recent decades is also manifested in the territory of Ukraine, as it is possible to establish the most adapted species of legumes and cereals to adverse weather conditions and to identify eff ective technological methods of managing these processes for maximum conservation economically valuable species in the herbage. The purpose of the research is to establish the infl uence of diff erent ways of sowing of clover and alfalfa cereal crops agrophytocenoses on the formation of their botanical composition. Field studies have established diff erent eff ects of conventional in-line, cross-section and cross-sectional methods of sowing on the formation of botanical composition of grass mixtures of clover meadow (Trifolium pratense) varieties Sparta and Pavlyna with timothy meadow (Phleum pratense) and fenugreek multifl oral (Lolium multifl orum) and of agrophytocenoses of alfalfa of Sinyukha and Seraphima sowing varieties with reed fire (Festuca arundinacea Schreb) and middle wheatgrass (Elytrigia intermedia). For the average of four years of life of clover and alfalfa cereal crops agrophytocenoses, the highest proportion of legume component was observed with split-cross sowing – 51.6 % for Sparta, 53.1 % for Pavlyna, 60.3 % for Seraphima and 61.6 % for the Sinyukha variety. In the fourth year of life (the third year of use) of sowed leguminous-cereals agrophytocenoses, the preservation of the legume component was 14.6–15.5 % in clover-cereals grass mixtures with the Sparta variety and 16.0–16.8 % with the Pavlyna variety. In alfalfa grasslands, these indicators were 54.0–55.1 % with Seraphim and 55.0–56.2 % with Sinyukha. Among the studied varieties of clover meadow and alfalfa sowing proved better in the conditions of the Forest Steppe of western Pavlyna and Sinyukha. Cross-sectional and divided cross-sectional sowing of legumes and cereals mixtures proved to be better compared to conventional row crops in terms of conservation of economically valuable grass species. Key words: agrophytocenosis, botanical composition, clover meadow, alfalfa sowing, sowing methods.


2021 ◽  
Vol 901 (1) ◽  
pp. 012007
Author(s):  
V M Kosolapov ◽  
V I Cherniavskih ◽  
E V Dumacheva ◽  
M N Marinich ◽  
L D Sajfutdinova ◽  
...  

Abstract We evaluated the stability of perennial legume and cereal grass species in artificial plant communities on permanent anti-erosion watercourses in the agroecosystems of the Belgorod region with active development of linear soil erosion. In the conditions of steppe and forest-steppe zones of the Belgorod region on permanently grassed watercourses in 2017-2019. varieties of perennial leguminous and cereal grasses: ‘Krasnoyaruzhskaya 1’ and ‘Krasnoyaruzhskaya 2’ (Medicago varia), ‘Kazatsky’ (Trifolium pratense), ‘Olshanka’ and ‘Ivica’ (Festuca arundinacea), ‘Streletsky’ and ‘Stepnyak’ (Lolium perenne)) obtained using local genetic material were studied. All varieties showed their resistance in agro-ecosystems with active development of linear erosion in the forest-steppe and steppe zones. Projective cover on watercourses in the steppe zone in all variants of experience was on average 83,4 %, in the forest-steppe zone - 86,3 %. In the third year of the tests on permanently irrigated watercourses in the steppe zone, the share of cereal and legume grass species was quite high and varied from 88 % in the variant M. varia + Onobrychis arenaria to 92 % in the variants M. varia + Bromopsis inermis and O. arenaria. In the forest-steppe zone, the share of cereal and legume grass species varied from 86 % in the variant L. perenne to 94 % in the variant L. perenne + B. inermis.


Sign in / Sign up

Export Citation Format

Share Document