scholarly journals Effects on Crop Development, Yields and Chemical Composition of Celeriac (Apium graveolens L. var. rapaceum) Cultivated Underneath an Agrivoltaic System

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 733
Author(s):  
Axel Weselek ◽  
Andrea Bauerle ◽  
Sabine Zikeli ◽  
Iris Lewandowski ◽  
Petra Högy

Agrivoltaic (AV) systems increase land productivity through the combined production of renewable energy and food. Although several studies have addressed their impact on crop production, many aspects remain unexplored. The objective of this study was to determine the effects of AV on the cultivation of celeriac, a common root vegetable in Central Europe. Celeriac was cultivated in 2017 and 2018 as part of an organically managed on-farm experiment, both underneath an AV system and in full-sun conditions. Under AV, photosynthetic active radiation was reduced by about 30%. Monitoring of crop development showed that in both years, plant height increased significantly under AV. Fresh bulb yield decreased by about 19% in 2017 and increased by about 12% in 2018 in AV, but the changes were not significant. Aboveground biomass increased in both years under AV, but only increased significantly in 2018. As aboveground biomass is a determinant of root biomass at harvest in root vegetables, bulb yields may be further increased by a prolonged vegetation period under AV. Compound analysis of celeriac bulbs did not show any clear effects from treatment. As harvestable yields were not significantly reduced, we concluded that celeriac can be considered a suitable crop for cultivation under AV.

2020 ◽  
Vol 1 (2020) ◽  
pp. 5-28

Salinization of soil and water can pose a serious threat for irrigated agricultural lands in arid and semi-arid regions because high concentrations of salt can negatively impact crop production, and consequently, the agricultural economy. Halophytes are highly salt-tolerant plants that may provide a viable option for cultivation in saline areas, enabling economic production from previously unproductive land. Many halophytes can be used for human consumption, forage for livestock, or biofuel production. These plants may also remediate saline soils by taking up salt from the soil, thereby improving conditions for conventional crop production. This project looked at growth of two halophytic crops, AC Saltlander green wheatgrass (Elymus hoffmannii) and Rainbow quinoa (Chenopodium quinoa var. rainbow) under different salt stresses in a greenhouse experiment. We cultivated the crops in a greenhouse with crossed saline soil (2, 4, 6, 8, and 12 dS/m) and irrigation (1, 2, 4, and 6 dS/m) treatments. We measured plant height approximately bi-weekly until harvest. A subset of harvested biomass, roots and soil subsamples were analyzed for nutrient and salt content. Quinoa and AC Saltlander aboveground biomass were larger for soil salinities greater than 2 dS/m, with maximum measured biomass after harvest of more than 5 g for quinoa, and more than 12 g for AC Saltlander. Quinoa height was greatest on most dates for soil salinity of 4 dS/m. There was a significant relationship between increased soil salinity and Cl content of quinoa plant tissues, roots, and soil at harvest, but irrigation salinity had no significant effects on analyzed quinoa variables. AC Saltlander root biomass decreased with increasing soil salinity, but had greatest root biomass at the 2 and 6 dS/m irrigation salinities (the smallest and greatest irrigation salinity treatments). AC Saltlander aboveground biomass chemistry (i.e., Ca, Na, and Cl) responded significantly to differences in soil chemistry. Similarly, AC Saltlander aboveground biomass Ca, Na, S, and Cl was significantly affected by irrigation salinity. Overall, both halophytes germinated, grew, and produced seeds in the greenhouse experiment on saline Nevada soils, so they may be options for alternative crops on marginal lands in Nevada with moderately saline irrigation water.


Food Security ◽  
2021 ◽  
Author(s):  
Alain Ndoli ◽  
Athanase Mukuralinda ◽  
Antonius G. T. Schut ◽  
Miyuki Iiyama ◽  
Jean Damascene Ndayambaje ◽  
...  

AbstractThe world is challenged to meet the food demand of a growing population, especially in developing countries. Given the ambitious plans to scale up agroforestry in Africa, an improved understanding of the effect of agroforestry practices on the already challenged food security of rural households is crucial. The present study was undertaken to assess how on-farm trees impacted food security in addition to other household income sources in Rwanda. In each of the six agroecologies of Rwanda, a stratified sampling procedure was used where two administrative cells (4th formal administrative level) were selected in which households were randomly selected for interviews. A survey including 399 farmers was conducted and farmers were grouped in three types of agroforestry practice (i) low practitioners (LAP) represented by the first tertile, (ii) medium practitioners (MAP) represented by the second tertile and (iii) high practitioners (HAP) represented by the third tertile of households in terms of tree number. Asset values, household income sources, crop production, farm size, crop yield, and food security (food energy needs) were quantified among the types of agroforestry practice. A larger proportion of HAP households had access to adequate quantity and diversity of food when compared with MAP and LAP households. Food security probability was higher for households with more resources, including land, trees and livestock, coinciding with an increased crop and livestock income. We found no difference in asset endowment among types of agroforestry practices, while farmers in agroecologies with smaller farms (0.42 ha to 0.66 ha) had more on-farm trees (212 to 358 trees per household) than farms in agroecologies with larger farms (0.96 ha to 1.23 ha) which had 49 to 129 trees per household, probably due to differences in biophysical conditions. A positive association between tree density and food security was found in two out of six agroecologies. The proportion of income that came from tree products was high (> 20%) for a small fraction of farmers (12%), with the more food insecure households relying more on income from tree products than households with better food security status. Thus, tree income can be percieved as a “safety net” for the poorest households.


2015 ◽  
Vol 67 (2) ◽  
pp. 547-560 ◽  
Author(s):  
Zeljko Dzeletovic ◽  
Djordje Glamoclija

Perennial bioenergy grass crops, despite a relatively similar production of aboveground biomass, show significant differences in the overall root biomass. Rhizomes play a key role in economizing nutrients in miscanthus. The aim of this research was to establish the effect of N (nitrogen) on the distribution of biomass and concentration of major macro- and micronutrients in the miscanthus root system, using simple experiment in pots. After two years of growth, the rhizomes and roots were taken out of the pots, cleaned of earth and analyzed. About 2/3 of the mass of the miscanthus root system consist of rhizome mass. The overall dry biomass of newly formed rhizomes and roots is decreased with the increase in the amount of applied N fertilization. Thereby, the N concentration in the entire root system, as well as in some of its parts, increased with the rise in applied amount of N. Our results show that increasing amounts of applied N consistently negatively correlate with P concentrations in the miscanthus root system, in contrast to Mn concentrations, with which they correlate positively.


2019 ◽  
Vol 70 (1) ◽  
pp. 781-808 ◽  
Author(s):  
Andrew D.B. Leakey ◽  
John N. Ferguson ◽  
Charles P. Pignon ◽  
Alex Wu ◽  
Zhenong Jin ◽  
...  

The ratio of plant carbon gain to water use, known as water use efficiency (WUE), has long been recognized as a key constraint on crop production and an important target for crop improvement. WUE is a physiologically and genetically complex trait that can be defined at a range of scales. Many component traits directly influence WUE, including photosynthesis, stomatal and mesophyll conductances, and canopy structure. Interactions of carbon and water relations with diverse aspects of the environment and crop development also modulate WUE. As a consequence, enhancing WUE by breeding or biotechnology has proven challenging but not impossible. This review aims to synthesize new knowledge of WUE arising from advances in phenotyping, modeling, physiology, genetics, and molecular biology in the context of classical theoretical principles. In addition, we discuss how rising atmospheric CO2concentration has created and will continue to create opportunities for enhancing WUE by modifying the trade-off between photosynthesis and transpiration.


2016 ◽  
Vol 9 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Lindsey R. Milbrath ◽  
Antonio DiTommaso ◽  
Jeromy Biazzo ◽  
Scott H. Morris

AbstractThe European vines pale swallowwort and black swallowwort are invading various habitats in northeastern North America. It is unclear how these plants might respond to potential biological control agents, as they experience little herbivore damage in North America, or longer durations of mowing given the reported lack of efficacy of mechanical control. We evaluated the effect of six seasons of artificial defoliation (50 or 100% defoliation once or twice per season) and clipping (once, twice, or four times at 8 cm above the soil level) on the survival, growth, and reproduction of mature plants of the two species grown in a common garden field experiment. No plants died from damage after 6 yr. Black swallowwort produced more aboveground biomass, whereas pale swallowwort produced more root biomass and root crown buds, compared with its congener species. For most damage treatments, root biomass and the number of crown buds and stems increased over time, whereas aboveground biomass and viable seeds per plant generally did not change. Substantial overlap in plant size and seed production occurred among damage treatments and species. The most severe defoliation treatment did not substantially limit growth and reproduction compared with undamaged plants. While two clippings per season sometimes prevented seed production, four clippings per season was the only type of damage that consistently prevented plant growth and eliminated seed production. Pale and black swallowwort display a high tolerance to aboveground tissue loss in high-light environments without plant competition. The annual increase in plant size calls into question the potential efficacy of a defoliating insect against field populations of swallowworts, and it seems likely the only benefits of a long-term mowing regime will be to eliminate seed production.


Soil Research ◽  
2011 ◽  
Vol 49 (7) ◽  
pp. 559 ◽  
Author(s):  
Y. P. Dang ◽  
R. C. Dalal ◽  
M. J. Pringle ◽  
A. J. W. Biggs ◽  
S. Darr ◽  
...  

Salinity, sodicity, acidity, and phytotoxic concentrations of chloride (Cl–) in soil are major constraints to crop production in many soils of north-eastern Australia. Soil constraints vary both spatially across the landscape and vertically within the soil profile. Identification of the spatial variability of these constraints will allow farmers to tune management to the potential of the land, which will, in turn, bring economic benefit. For three cropping fields in Australia’s northern grains region, we used electromagnetic induction with an EM38, which measures apparent electrical conductivity of the soil (ECa) and soil sampling to identify potential management classes. Soil Cl– and soluble Na+ concentrations, EC of the saturated extract (ECse), and soil moisture were the principal determinants of the variation of ECa, measured both at the drained upper limit of moisture (UL) and at the lower limit (LL) of moisture extracted by the crop. Grain yield showed a strong negative relation with ECa at both UL and LL, although it was stronger for the latter. We arrive at a framework to estimate the monetary value of site-specific management options, through: (i) identification of potential management classes formed from ECa at LL; (ii) measurement of soil attributes generally associated with soil constraints in the region; (iii) grain yield monitoring; and (iv) simple on-farm experiments. Simple on-farm experiments suggested that, for constrained areas, matching fertiliser application to realistic yield potential, coupled to gypsum amelioration, could potentially benefit growers by AU$14–46/ha.year (fertiliser) and $207/ha.3 years (gypsum).


2018 ◽  
Vol 111 (3) ◽  
pp. 715 ◽  
Author(s):  
Neha CHATTERJEE ◽  
Deepranjan SARKAR ◽  
Ardit SANKAR ◽  
Sumita PAL ◽  
H. B. SINGH ◽  
...  

<p>Priming techniques are gaining importance in agriculture with the increase in environmental stresses. Resource-poor farmers are in urgent need of such techniques as they are simple, economical, and value-added intervention associated with low-risk bearing factors. Seed enhancement methods are key to improve seed performance and achieve a good stand establishment. Worldwide beneficial effects of priming are recorded. But these technologies have still not reached most farmers. This review highlights the importance of on-farm priming strategies in modern crop production system to yield better productivity and obtain higher economic returns. Stimulation of the pre-germination metabolic changes by priming is necessary to overcome the environmental challenges that a plant can encounter. Thus, the study also focuses on mechanisms associated with priming-induced stress tolerance of crops. Various safe practical methods of seed priming can be easily adopted by the farming community to alleviate the levels of different stresses which can hamper productivity. Simultaneously they can produce good quality seeds and use them further for the next crop cycle cutting the costs of seed purchase.</p>


2004 ◽  
Vol 34 (9) ◽  
pp. 1883-1894 ◽  
Author(s):  
Ayalsew Zerihun ◽  
Kelvin D Montagu

We compared the belowground biomass (BGB)/aboveground biomass (AGB) ratio and the vertical root distribution of 40-year-old Pinus radiata D. Don fertilized with 0 or 90 kg P·ha–1 at planting. Root biomass was determined by a combination of coring (fine roots, ϕ < 2 mm; small roots, 2 ≤ ϕ < 15 mm) and excavation (coarse roots, ϕ ≥ 5 mm). Stand-level AGB and coarse root biomass (CRB) were estimated with the use of allometric relations. After 40 years, AGB and CRB of P-fertilized trees were 4.5 times those of unfertilized trees, indicating that CRB scaled isometrically with AGB independently of P supply. By contrast, P fertilization increased the fine and small root biomass (FSRB) pool by only 50%. As a result, the scaling of FSRB to AGB was dependent on P supply. The differential response of the FSRB to P fertilization caused the overall BGB/AGB ratio to decrease from 0.29 in control plots to 0.20 in P-fertilized plots. Phosphorus fertilization also altered the vertical distribution of fine root biomass (FRB). For example, the proportion of FRB in the top 15 cm increased from 41% to 52% with P fertilization. Collectively, the results showed that P added early in the growth phase had a persistent effect on the BGB/AGB ratio in P. radiata. This was primarily brought about by altered biomass partitioning to the nutrient-acquiring FSRB pool.


Sign in / Sign up

Export Citation Format

Share Document