scholarly journals Influence of Green Light Added with Red and Blue LEDs on the Growth, Leaf Microstructure and Quality of Spinach (Spinacia oleracea L.)

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1724
Author(s):  
Thi-Phuong-Dung Nguyen ◽  
Dong-Cheol Jang ◽  
Thi-Thanh-Huyen Tran ◽  
Quang-Thach Nguyen ◽  
Il-Seop Kim ◽  
...  

The aim of this study was to investigate the effects of green light, added with red and blue LEDs, on the growth, leaf microstructure and quality of spinach plants. Plants were transplanted and grown hydroponically for 30 days under different combinations of red:blue with a 4:1 ratio (R4B1), red:blue:green with a 5:2:3 ratio (R5B2G3) and red:blue:green with a 1:1:1 ratio (R1B1G1), at a 190 µmoL m−2·s−1 photosynthetic photon flux density (PPFD). The results showed that green light, added to red and blue LEDs at a reasonable ratio, could reduce the growth, leaf microstructure and quality of spinach plants, but not the organic acid content. The highest values for the growth parameters, photosynthetic pigments, leaf structure characteristics and quality of the spinach plant were observed for the R4B1 treatment, but not for the organic acid content. Therefore, our results suggest that green light added to red and blue LEDs at a reasonable ratio is not suitable for the growth of spinach.

Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 80
Author(s):  
Triston Hooks ◽  
Joseph Masabni ◽  
Ling Sun ◽  
Genhua Niu

Blue light and ultra-violet (UV) light have been shown to influence plant growth, morphology, and quality. In this study, we investigated the effects of pre-harvest supplemental lighting using UV-A and blue (UV-A/Blue) light and red and blue (RB) light on growth and nutritional quality of lettuce grown hydroponically in two greenhouse experiments. The RB spectrum was applied pre-harvest for two days or nights, while the UV-A/Blue spectrum was applied pre-harvest for two or four days or nights. All pre-harvest supplemental lighting treatments had a same duration of 12 h with a photon flux density (PFD) of 171 μmol m−2 s−1. Results of both experiments showed that pre-harvest supplemental lighting using UV A/Blue or RB light can increase the growth and nutritional quality of lettuce grown hydroponically. The enhancement of lettuce growth and nutritional quality by the pre-harvest supplemental lighting was more effective under low daily light integral (DLI) compared to a high DLI and tended to be more effective when applied during the night, regardless of spectrum.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 303
Author(s):  
Sungeun Lim ◽  
Jongyun Kim

Different light qualities affect plant growth and physiological responses, including stomatal openings. However, most researchers have focused on stomatal responses to red and blue light only, and the direct measurement of evapotranspiration has not been examined. Therefore, we quantified the evapotranspiration of sweet basil under various red (R), green (G), and blue (B) combinations using light-emitting diodes (LEDs) and investigated its stomatal responses. Seedlings were subjected to five different spectral treatments for two weeks at a photosynthetic photon flux density of 200 µmol m−2 s−1. The ratios of the RGB light intensities were as follows: R 100% (R100), R:G = 75:25 (R75G25), R:B = 75:25 (R75B25), R:G:B = 60:20:20 (R60G20B20), and R:G:B = 31:42:27 (R31G42B27). During the experiment, the evapotranspiration of the plants was measured using load cells. Although there were no significant differences in growth parameters among the treatments, the photosynthetic rate and stomatal conductance were higher in plants grown under blue LEDs (R75B25, R60G20B20, and R31G42B27) than in the R100 treatment. The amount of water used was different among the treatments (663.5, 726.5, 728.7, 778.0, and 782.1 mL for the R100, R75G25, R60G20B20, R75B25, and R31G42B27 treatments, respectively). The stomatal density was correlated with the blue light intensity (p = 0.0024) and with the combined intensity of green and blue light (p = 0.0029); therefore, green light was considered to promote the stomatal development of plants together with blue light. Overall, different light qualities affected the water use of plants by regulating stomatal conductance, including changes in stomatal density.


Agronomy ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 207 ◽  
Author(s):  
Hao Wei ◽  
Jiangtao Hu ◽  
Chen Liu ◽  
Mengzhao Wang ◽  
Jin Zhao ◽  
...  

Supplementary lighting is commonly used in high-quality seedling production. In this study, grafted tomato seedlings were grown for 10 days in a glasshouse with 16-h daily supplementary lighting at 100 μmol·m−2·s−1 PPFD (Photosynthetic photon flux density) from either high-pressure sodium (HPS), metal halide (MH), far-red (FR), white LEDs (Light emitting diodes) (W), or mixed LEDs (W1R2B1, where the subscript numbers indicate the ratio of the LED chips) to determine which light sources improve the seedling quality. The control seedlings did not receive any supplementary light. Physiological parameters and the expression of genes related to photosynthesis were analyzed. The results showed that root length, biomass, number of leaves, chlorophyll (SPAD), scion dry weight to height ratio (WHR), and specific leaf weight (SLW) were the greatest for grafted seedlings grown in W1R2B1. The level of root ball formation was the greatest for seedlings grown in W1R2B1, followed by those grown in W, HPS, and MH. Seedlings grown in FR did not fare well, as they were very thin and weak. Moreover, the expression of two photosynthetic genes (PsaA and PsbA) was significantly increased by W1R2B1 and W, which suggests that the plastid or nuclear genes might be regulated. The overall results suggest that W1R2B1 was the most suitable light source to enhance the quality of grafted tomato seedlings. The results of this study could be used as a reference for seedling production in glasshouses, and may provide new insights in the research on lights affecting the development of plants.


2018 ◽  
Vol 61 (2) ◽  
pp. 129-137 ◽  
Author(s):  
N. Kitir ◽  
A. Gunes ◽  
M. Turan ◽  
E. Yildirim ◽  
B. Topcuoglu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Jun Liu ◽  
Marc W. van Iersel

Red and blue light are traditionally believed to have a higher quantum yield of CO2 assimilation (QY, moles of CO2 assimilated per mole of photons) than green light, because green light is absorbed less efficiently. However, because of its lower absorptance, green light can penetrate deeper and excite chlorophyll deeper in leaves. We hypothesized that, at high photosynthetic photon flux density (PPFD), green light may achieve higher QY and net CO2 assimilation rate (An) than red or blue light, because of its more uniform absorption throughtout leaves. To test the interactive effects of PPFD and light spectrum on photosynthesis, we measured leaf An of “Green Tower” lettuce (Lactuca sativa) under red, blue, and green light, and combinations of those at PPFDs from 30 to 1,300 μmol⋅m–2⋅s–1. The electron transport rates (J) and the maximum Rubisco carboxylation rate (Vc,max) at low (200 μmol⋅m–2⋅s–1) and high PPFD (1,000 μmol⋅m–2⋅s–1) were estimated from photosynthetic CO2 response curves. Both QYm,inc (maximum QY on incident PPFD basis) and J at low PPFD were higher under red light than under blue and green light. Factoring in light absorption, QYm,abs (the maximum QY on absorbed PPFD basis) under green and red light were both higher than under blue light, indicating that the low QYm,inc under green light was due to lower absorptance, while absorbed blue photons were used inherently least efficiently. At high PPFD, the QYinc [gross CO2 assimilation (Ag)/incident PPFD] and J under red and green light were similar, and higher than under blue light, confirming our hypothesis. Vc,max may not limit photosynthesis at a PPFD of 200 μmol m–2 s–1 and was largely unaffected by light spectrum at 1,000 μmol⋅m–2⋅s–1. Ag and J under different spectra were positively correlated, suggesting that the interactive effect between light spectrum and PPFD on photosynthesis was due to effects on J. No interaction between the three colors of light was detected. In summary, at low PPFD, green light had the lowest photosynthetic efficiency because of its low absorptance. Contrary, at high PPFD, QYinc under green light was among the highest, likely resulting from more uniform distribution of green light in leaves.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1996
Author(s):  
Yali Li ◽  
Jie Xiao ◽  
Jiangtao Hu ◽  
Byoung Ryong Jeong

The optimal photoperiod and light quality for runner induction in strawberries ‘Sulhyang’ and ‘Maehyang’ were investigated. Two experiments were carried out in a semi-closed walk-in growth chamber with 25/15 °C day/night temperatures and a light intensity of 250 μmol·m–2·s–1photosynthetic photon flux density (PPFD) provided from white light-emitting diodes (LEDs). In the first experiment, plants were treated with a photoperiod of either 12, 14, 16, 18, 20, or 22 h In the second experiment, a total of 4 h of night interruption (NI) light at an intensity of 70 μmol·m–2·s–1PPFD provided from either red, blue, green, white, or far-red LED in addition to 11 h short day (SD). The results showed that both ‘Sulhyang’ and ‘Maehyang’ produced runners when a photoperiod was longer than 16 h, and the number of runners induced positively correlated with the length of photoperiod. However, the plant growth, contents of chlorophyll, sugar and starch, and Fv/Fo decreased in a 22 h photoperiod. All qualities of the NI light, especially red light, significantly increased the number of runners and daughter plants induced per plant as compared with those in the SD treatment in both cultivars. In a conclusion, a photoperiod between 16 and 20 h and NI light, especially red NI light, can be used for quality runner induction in both ‘Sulhyang’ and ‘Maehyang’.


Sign in / Sign up

Export Citation Format

Share Document