scholarly journals Use of Wild Relatives in Durum Wheat (Triticum turgidum L. var. durum Desf.) Breeding Program: Adaptation and Stability in Context of Contrasting Environments in Tunisia

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1782
Author(s):  
Sourour Ayed ◽  
Imen Bouhaouel ◽  
Afef Othmani ◽  
Filippo Maria Bassi

In Mediterranean regions, the performance of durum wheat (Triticum turgidum L. var. durum Desf.) yield often varies due to significant genotype × environment interaction (GEI); therefore, yield stability is an important consideration in breeding programs. The aim of this research was to explore the GEI pattern and yield stability of 24 promising durum wheat lines, selected by ICARDA in several African countries (seven elites, four commercial varieties, and 13 durum wheat wide crosses, generated by hybridization of elites and Triticum dicoccoides Koern. ex Schweinf., Triticum araraticum Jakubz, and Aegilops speltoides Tausch) against a Tunisian local check variety ‘Salim’. Yield assessment was conducted across six environments under rainfed conditions, at the field station of Kef in a semi-arid region during four cropping seasons (2014–2015, 2015–2016, 2016–2017, and 2017–2018) and in a sub-humid region at the station of Beja during two cropping seasons (2015–2016 and 2018–2019). The analysis of variance showed that the environment is the main source of variation of grain yield (72.05%), followed by the interaction environments × genotypes (25.33%) and genotypes (2.62%). The genotype × genotype by environment model (PC) based on grain yield identified a mega-environment including Kef (2016–2017 and 2017–2018) and Beja (2015–2016 and 2018–2019) and elite line 22 as a widely adapted genotype. Combined analysis, computed using the average grain yield of lines and the yield stability wide adaptation index (AWAI), showed that elite lines 9 and 23 (2.41 and 2.34 t·ha−1, respectively), and wild relative-derived lines, 5, 1, and 10 (2.37, 2.31, and 2.28 t·ha−1, respectively) were more stable and better yielding than the national reference (2.21 t·ha−1). This finding supports the good yield potential of wild relative-derived lines. The five selections are recommended to be developed in multi-environments in several regions of Tunisia, especially in semi-arid area.

Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1992
Author(s):  
Hafid Aberkane ◽  
Ahmed Amri ◽  
Bouchra Belkadi ◽  
Abdelkarim Filali-Maltouf ◽  
Jan Valkoun ◽  
...  

Durum wheat (Triticum turgidum subsp. durum) is mostly grown in Mediterranean type environments, characterized by unpredictable rainfall amounts and distribution, heat stress, and prevalence of major diseases and pests, all to be exacerbated with climate change. Pre-breeding efforts transgressing adaptive genes from wild relatives need to be strengthened to overcome these abiotic and biotic challenges. In this study, we evaluated the yield stability of 67 lines issued from interspecific crosses of Cham5 and Haurani with Triticum dicoccoides, T. agilopoides, T. urartu, and Aegilops speltoides, grown under 15 contrasting rainfed and irrigated environments in Morocco, and heat-prone conditions in Sudan. Yield stability was assessed using parametric (univariate (e.g., Bi, S2di, Pi etc) and multivariate (ASV, SIPC)) and non-parametric (Si1, Si2, Si3 and Si6) approaches. The combined analysis of variance showed the highly significant effects of genotypes, environments, and genotype-by-environment interaction (GEI). The environments varied in yield (1370–6468 kg/ha), heritability (0.08–0.9), and in their contribution to the GEI. Several lines derived from the four wild parents combined productivity and stability, making them suitable for unpredictable climatic conditions. A significant advantage in yield and stability was observed in Haurani derivatives compared to their recurrent parent. Furthermore, no yield penalty was observed in many of Cham5 derivatives; they had improved yield under unfavorable environments while maintaining the high yield potential from the recurrent parent (e.g., 142,026 and 142,074). It was found that a limited number of backcrosses can produce high yielding/stable germplasm while increasing diversity in a breeding pipeline. Comparing different stability approaches showed that some of them can be used interchangeably; others can be complementary to combine broad adaption with higher yield.


Author(s):  
Mohtasham Mohammadi ◽  
Peyman Sharifi ◽  
Rahmatollah Karimizadeh

The objectives of this study were to estimate genotype × environment (GE) interaction effects and to determine the stable durum wheat (Triticum turgidum var. durum Desf.) genotypes for grain yield in warm winter areas of Iran. Twenty durum wheat genotypes, including 18 experimental lines and two local checks were evaluated during three cropping seasons (2004–2006) at five research sites. The combined analysis of variance indicated that the main effects of location and genotype and interaction effects of genotype × year, genotype × location and genotype × year × location were highly significant for grain yield. GE interaction was analyzed using linear regression techniques. There was considerable variation for grain yield among both genotypes and environments. Stability was estimated using the Eberhart and Russell method. Stability analysis of grain yield in different environments showed that the variance of genotypes and genotypes × environment (linear) interactions were significant. Due to the stability analysis, genotype 12 (D68-1-93A-1A//Ruff/Fg/3/Mtl-5/4/Lahn) indicated relatively minimum value for S2d and a b-value close to unity and hence, it may be considered stable for grain yield in all of the environments. The results showed that G10 (Bcr//Memo/goo) also favor for its stability in high yielding environments. The broad sense heritability was 77%, indicating selection should give a good response for grain yield.


1998 ◽  
Vol 78 (1) ◽  
pp. 63-70 ◽  
Author(s):  
C. A. Grant ◽  
L. D. Bailey

Cadmium concentration in durum (Triticum turgidum) grain may be influenced by fertilizer management. A 3-yr field study conducted on two Orthic Black Chernozemic soils investigated the effects of banded and broadcast applications of N and P, and applications of Zn fertilizer on the yield and Cd concentration of the grain of two cultivars of durum wheat. Applications of N and P fertilizer increased grain yield of durum wheat when soil nutrient supply was low or yield potential was high, while Zn application generally had little effect on grain yield. Cadmium concentration of durum increased with applications of N and P and was generally unaffected by Zn application. Method of application of N or P did not consistently influence either grain yield or Cd concentration of the grain under the conditions of this study. Where differences due to placement occurred, banded P produced higher grain yield and Cd concentration than application of the same level of P as a broadcast treatment. Cadmium accumulation increased substantially with N and P applications, since both Cd concentration in the grain and grain yield increased with N and P application. Year-to-year variation in Cd concentration in the grain was large, indicating a strong effect of environment on Cd phytoavailability. Key words: Management, banding, nutrient, accumulation


Agronomy ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 233 ◽  
Author(s):  
Salam Abu-Zaitoun ◽  
Kottakota Chandrasekhar ◽  
Siwar Assili ◽  
Munqez Shtaya ◽  
Rana Jamous ◽  
...  

Drought is the major environmental factor limiting wheat production worldwide. Developing novel cultivars with greater drought tolerance is the most viable solution to ensure sustainable agricultural production and alleviating threats to food-security. Here we established a core-collection of landraces and modern durum wheat cultivars (WheatME, n = 36), from the Middle East region (Jordan, Palestine and Israel) aiming at unlocking the genetic and morpho-physiological adaptation to semi-arid environment conditions. Interestingly, genetic analysis of the WheatME core-collection could not distinguish the landraces according to their country of origin. Field-based evaluation of the core-collection conducted across range of contrasting environmental conditions: Til-Palestine, Bet-Dagan-Israel and Irbid-Jordan with annual precipitation of 500 mm, 360 mm and 315 mm, respectively. The Til environment showed highest grain yield while the Irbid environment showed the lowest values. Analysis of variance showed a significant Genotype × Environment interaction for plant phenology traits (plant height and heading date) and productivity traits (1000-kernel weight, and grain yield). Principal component analysis showed three main cultivar groups: High yielding lines (modern durum cultivars, and landraces), tall late flowering landraces, and landraces with high grain weight. This knowledge could serve as basis for future breeding efforts to develop new elite cultivars adapted to the Mediterranean Basin’s semi-arid conditions.


2019 ◽  
Vol 21 (2) ◽  
pp. 127-138
Author(s):  
Tohid Najafi Mirak ◽  
Ali Akbar Moayedi ◽  
Shahriar Sasani ◽  
Akbar Ghandi ◽  
◽  
...  

2013 ◽  
Vol 93 (6) ◽  
pp. 1265-1270 ◽  
Author(s):  
C. J. Pozniak

Pozniak, C. J. 2013. CDC Desire durum wheat. Can. J. Plant Sci. 93: 1265–1270. CDC Desire durum wheat is adapted to the durum production area of the Canadian prairies. This conventional height durum wheat cultivar combines high grain yield potential with high grain pigment and protein concentrations and low grain cadmium. CDC Desire is strong-strawed and is earlier maturing than all check cultivars. CDC Desire expresses disease resistance similar to the current check cultivars.


2015 ◽  
Vol 95 (5) ◽  
pp. 1007-1012 ◽  
Author(s):  
C. J. Pozniak ◽  
J. M. Clarke

Pozniak, C. J. and Clarke, J. M. 2015. CDC Carbide durum wheat. Can. J. Plant Sci. 95: 1007–1012. CDC Carbide durum wheat is adapted to the durum production area of the Canadian prairies. This conventional-height durum wheat cultivar combines high grain yield potential with high grain pigment and protein concentrations, and low grain cadmium. CDC Carbide carries the Sm1 gene conferring resistance to the Orange Wheat Blossom Midge [Sitodiplosis modellana (Gehin)]. CDC Carbide is resistant to prevalent races of leaf, stem and stripe rust, and common bunt, and expresses end-use quality suitable for the Canada Western Amber Durum class.


1987 ◽  
Vol 108 (2) ◽  
pp. 395-401 ◽  
Author(s):  
D. C. Adjei-Twum

SummaryEffects of plant density ranging from 44444 to 133333 plants/ha and tillage practices (planting in flat beds (control), in the furrows of open ridges, on the top of open ridges, in the furrows of tie-ridges and on the top of tie-ridges) on growth and grain yield of sorghum were investigated at Kobo, a typical semi-arid area in Ethiopia, during 1980, 1981 and 1982 cropping seasons. Plant growth was limited in the flat beds because they were likely to be deficient in soil moisture and sometimes in the tie-ridging treatments, due to waterlogging. However, planting on the top of tie-ridges produced 1·6, 0·4 and 1·8 t/ha more yield than in the flat beds, the method commonly practised by the Kobo farmers, during 1980, 1981 and 1982 respectively. In all seasons, the effect of plant density did not show marked differences. The plants rather adjusted their reproductive growth and development to the seasonal rainfall and presumably to the available soil moisture at the grain-filling periods. It was concluded that the highest plant density did not reach the optimum for the area. Planting sorghum on the top of tie-ridges is recommended.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Ali Mansouri ◽  
Bachir Oudjehih ◽  
Abdelkader Benbelkacem ◽  
Zine El Abidine Fellahi ◽  
Hamenna Bouzerzour

Relationships among agronomic traits and grain yield were investigated in 56 genotypes of durum wheat (Triticum durumDesf.). The results indicated the presence of sufficient variability nearly for all measured traits. Heritability and expected genetic gain varied among traits. Aboveground biomass, harvest index, and spike number were the most grain yield-influencing traits. Early genotypes showed above-average grain and biological yields, spike number, and lower canopy temperature. Assessed genotypes were clustered into three groups which differed mainly for biological, economical, straw, and grain yields, on the one hand, and plant height, chlorophyll content, and canopy temperature, on the other hand. Selection for direct use from clusters carrying best combinations of yield-related traits and crosses to be made between genotypes belonging to contrasted clusters were suggested to generate more variability. Selection preferentially for spike number, biological yield, harvest index, and canopy temperature to accumulate favorable alleles in the selected entries for future uses is suggested.


2013 ◽  
Vol 64 (10) ◽  
pp. 957 ◽  
Author(s):  
S. Dura ◽  
M. Duwayri ◽  
M. Nachit ◽  
F. Al Sheyab

Durum wheat is one of the most important staple food crops, grown mainly in the Mediterranean region where its productivity is drastically affected by salinity. The objective of this study was to identify markers associated with grain yield and its related traits under saline conditions. A population of 114 F8 recombinant inbred lines (RILs) was derived by single-seed descent from a cross between Belikh2 (salinity-tolerant variety) and Omrabi5 (less salinity tolerant) was grown under non-saline and saline conditions in a glasshouse. Phenotypic data of the RILs and parental lines were measured for 15 agronomic traits. Association of 96 simple sequence repeat (SSR) loci covering all 14 chromosomes with 15 agronomic traits was analysed with a mixed linear model. In total, 49 SSR loci were significantly associated with these traits. Under saline conditions, 12 markers were associated with phenological traits and 19 markers were associated with yield and yield components. Marker alleles from Belikh2 were associated with a positive effect for the majority of markers associated with yield and yield components. Under saline condition, five markers (Xwmc182, Xwmc388, Xwmc398, Xbarc61, and Xwmc177) were closely linked with grain yield, located on chromosomes 2A, 3A, 3B, 4B, 5A, 6B, and 7A. These markers could be used for marker-assisted selection in durum wheat breeding under saline conditions.


Sign in / Sign up

Export Citation Format

Share Document