scholarly journals Physiological and Morphometric Response of Forage Grass Species and Their Biomass Distribution Depending on the Term and Frequency of Water Deficiency

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2471
Author(s):  
Grażyna Mastalerczuk ◽  
Barbara Borawska-Jarmułowicz

Periodic and repeated water scarcity has become an increasing concern on grasslands, causing not only to a reduction in productivity but also negative alterations in the carbon balance. The objective of this work was to comprehensively investigate some physiological performance traits of forage grasses, their roots morphometric features and distribution of biomass under simulated water deficit applied in different terms over a period of study. Plants were exposed to water shortage for 21 days, and then grown in optimal substrate moisture conditions. The gas exchange parameters and the main traits of root system architecture of three grass forage species and their cultivars were analyzed: Festulolium braunii (Richt.) A. Camus, cvs. Felopa and Sulino, Lolium perenne L., cvs. Bajka and Gagat and Festuca arundinacea Schreb. cvs. Odys and Rahela. Rapid decrease in the values of parameters related to the gas exchange process in grasses in the following days of water shortage was noticed. Water use efficiency (WUE) value was low in drought conditions due to increased transpiration of plants and was associated with a low C:N ratio in shoots. No obvious, positive effect of previously experienced drought stress on survival of tested grass species after another stress was observed. Cutting of plants after drought period most probably underlied the lack of memory and also additional factor weakened plant regrowth. When the drought was applied for the second time in spring during intensive plant growth, higher biomass allocation to the roots was observed. It was associated with the reduction of plant dry biomass, a decrease of carbon accumulation and the C:N ratio in the shoots. Due to the drought applied for the second time in summer, some biometric features of the roots were strongly and positively correlated with WUE, which is an important feature from the point of view of yield optimization and moisture use by plants.

2004 ◽  
Vol 16 (3) ◽  
pp. 119-130 ◽  
Author(s):  
Gustavo M. Souza ◽  
Rafael V. Ribeiro ◽  
Steven M. Pincus

Stomatal aperture is an essential factor both in regulation of transpiration and net photosynthesis. This regulation is especially important in the response of plants to drought or to an increase in leaf-to-air vapor pressure difference (VPD); however, such a regulation is part of a complex dynamical environment, associated with multiple regulatory pathways. Accordingly, we studied the effects of VPD on gas exchange of Citrus sinensis via the evaluation of two complementary analytic approaches, to approach an understanding of the full scope of the system interactions. First, we used classical statistical methodologies, e.g., means, coefficient of variation, and linear correlation. Second, we used measures developed for more model-independent applications, Approximate Entropy (ApEn) to evaluate the irregularity or complexity of gas exchange time-series, and network connectance to evaluate changes in the extent of linkage among specified gas exchange parameters. The analyses of experiments carried out under constant environmental conditions in each VPD treatment (1.0, 2.0 and 3.0 kPa) showed a number of relatively subtle results of physiological consequence, such as differences in network connectance during the period of measurements at the same condition showing different patterns of gas exchange regulation. Additionally, VPD changes affect the dynamics of gas exchange by alterations in the irregularity of the time-series. These experiments highlight the endogenous and self-organized mechanisms that underlie the gas exchange process with further theoretical findings and possible practical applications.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2736 ◽  
Author(s):  
Piotr Dąbrowski ◽  
Aneta H. Baczewska-Dąbrowska ◽  
Hazem M. Kalaji ◽  
Vasilij Goltsev ◽  
Momchil Paunov ◽  
...  

Perennial ryegrass (Lolium perenne L.) belongs to the common cultivated grass species in Central and Western Europe. Despite being considered to be susceptible to drought, it is frequently used for forming the turf in urban green areas. In such areas, the water deficit in soil is recognized as one of the most important environmental factors, which can limit plant growth. The basic aim of this work was to explore the mechanisms standing behind the changes in the photosynthetic apparatus performance of two perennial ryegrass turf varieties grown under drought stress using comprehensive in vivo chlorophyll fluorescence signal analyses and plant gas exchange measurements. Drought was applied after eight weeks of sowing by controlling the humidity of the roots ground medium at the levels of 30, 50, and 70% of the field water capacity. Measurements were carried out at four times: 0, 120, and 240 h after drought application and after recovery (refilling water to 70%). We found that the difference between the two tested varieties’ response resulted from a particular re-reduction of P700+ (reaction certer of PSI) that was caused by slower electron donation from P680. The difference in the rate of electron flow from Photosystem II (PSII) to PSI was also detected. The application of the combined tools (plants’ photosynthetic efficiency analysis and plant gas exchange measurements) allowed exploring and explaining the specific variety response to drought stress.


2017 ◽  
Vol 59 (1) ◽  
pp. 81-92
Author(s):  
Anna Wenda-Piesik ◽  
Włodzimierz Krzesiński ◽  
Agnieszka Nowak ◽  
Maciej Kazek ◽  
Magdalena Tomaszewska-Sowa

AbstractOilseed rape (Brassica napusL. ssp.oleiferaMetzg) was the subject of the study in two forms: wintercv. ‘Muller’ (at the rosette stage – the first internode BBCH 30 – 31) and springcv. ‘Feliks’ (at the yellow bud stage BBCH 59). The main gas-exchange parameters, net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), and intercellular CO2concentration (Ci) were measured on leaves prior to the piercing and immediately after the short-term piercing. The effect of mechanical wounding revealed different progress of the gas exchange process for the two forms. Piecewise linear regression with the breakpoint estimation showed that the plants at the same age but at a different vegetal stage, manage mechanical leaf-piercing differently. The differences concerned the stomatal conductance and transpiration changes since for rosette leaves the process consisted of five intervals with a uniform direction, while for stem leaves - of five intervals with a fluctuating direction. These parameters got stabilized within a similar time (220 mins) for both forms. The process of net photosynthetic rate was altered by the plant stages. ‘Muller’ plants at the rosette stage demonstrated dependence ofPNon time inlog-linear progression: y (PN) = 8.01 + 2.73 log10(x t2); 7 < t2< 220;R2= 0.96. For stem leaves of ‘Feliks’ plants the process of transpiration, in terms of directions, was convergent with the process of photosynthesis. Those two processes were synchronized from 1stto 114thmin of the test (r= 0.85;p< 0.001) in plants at the rosette stage and from 26thto 148thmin in stem leaves (r= 0.95;p< 0.001).


2020 ◽  
pp. 160-168
Author(s):  
I. Senyk

Botanical composition of grasses is one of the most important indicators the biological value and quality of the obtained hay and pasture forage, the longevity of hayfi elds and pastures depend on. The issue of changing the botanical composition of agrophytocenoses is especially important in the context of global climate change, which in recent decades is also manifested in the territory of Ukraine, as it is possible to establish the most adapted species of legumes and cereals to adverse weather conditions and to identify eff ective technological methods of managing these processes for maximum conservation economically valuable species in the herbage. The purpose of the research is to establish the infl uence of diff erent ways of sowing of clover and alfalfa cereal crops agrophytocenoses on the formation of their botanical composition. Field studies have established diff erent eff ects of conventional in-line, cross-section and cross-sectional methods of sowing on the formation of botanical composition of grass mixtures of clover meadow (Trifolium pratense) varieties Sparta and Pavlyna with timothy meadow (Phleum pratense) and fenugreek multifl oral (Lolium multifl orum) and of agrophytocenoses of alfalfa of Sinyukha and Seraphima sowing varieties with reed fire (Festuca arundinacea Schreb) and middle wheatgrass (Elytrigia intermedia). For the average of four years of life of clover and alfalfa cereal crops agrophytocenoses, the highest proportion of legume component was observed with split-cross sowing – 51.6 % for Sparta, 53.1 % for Pavlyna, 60.3 % for Seraphima and 61.6 % for the Sinyukha variety. In the fourth year of life (the third year of use) of sowed leguminous-cereals agrophytocenoses, the preservation of the legume component was 14.6–15.5 % in clover-cereals grass mixtures with the Sparta variety and 16.0–16.8 % with the Pavlyna variety. In alfalfa grasslands, these indicators were 54.0–55.1 % with Seraphim and 55.0–56.2 % with Sinyukha. Among the studied varieties of clover meadow and alfalfa sowing proved better in the conditions of the Forest Steppe of western Pavlyna and Sinyukha. Cross-sectional and divided cross-sectional sowing of legumes and cereals mixtures proved to be better compared to conventional row crops in terms of conservation of economically valuable grass species. Key words: agrophytocenosis, botanical composition, clover meadow, alfalfa sowing, sowing methods.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 501d-501
Author(s):  
Jonathan N. Egilla ◽  
Fred T. Davies

Six endomycorrhiza isolates from the Sonoran Desert of Mexico [Desert-14(18)1, 15(9)1, 15(15)1, Palo Fierro, Sonoran, and G. geosporum] were evaluated with a pure isolate of Glomus intraradices for their effect on the growth and gas exchange of Hibiscus rosa-sinensis L. cv. Leprechaun under low phosphorus fertility (11 mg P/L). Rooted cuttings of Hibiscus plants were inoculated with the seven mycorrhiza isolates and grown for 122 days. Gas exchange measurements were made on days 26, 88, and 122 after inoculation, and plants were harvested on day 123 for growth analysis. Plants inoculated with the seven isolates had 70% to 80% root colonization at harvest. Plants inoculated with G. intraradices had significantly higher leaf, shoot and root dry matter (DM), leaf DM/area (P ≤ 0.05) than those inoculated with any of the six isolates, and greater leaf area (LA) than Desert-15(9)1 and 15(15)1. Uninoculated plants had significantly lower leaf, shoot, root DM, leaf DM/area and LA (P ≤ 0.05) than the inoculated plants. There were no differences among the seven isolates in any of the gas exchange parameters measured [photosynthesis (A) stomatal conductance (gs), the ratio of intercellular to external CO2 (ci/ca), A to transpiration (E) ratio (A/E)]. The relationship between inoculated and uninoculated plants in these gas exchange parameters were variable on day 122 after inoculation.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 541b-541
Author(s):  
Rita Giuliani ◽  
James A. Flore

Potted peach trees grown outdoors during the 1997 season were subjected to drought and subsequent rewatering to evaluate their dynamic response to soil water content. The investigation was primarily focused on the early detection of plant water stress to prevent negative effects on the growth. Leaf chlorophyll fluorescence and canopy temperature estimates (by infra-red thermometry) were conducted. Drought effect on physiological processes were detected through by estimates of canopy development rate, leaf gas-exchange measurements; while leaf water potential was measured to characterize plant water status. A decrease in the canopy's development rate was found 1 week after irrigation was stopped, which also coincided with a more-negative leaf water potential, whereas a decrease of the gas-exchange activities occurred several days later. No significant differences between the stressed and control plants were recorded by the chlorophyll fluorescence parameters (Fo, Fm, Fv and the ratio Fv/Fm), whereas the infra-red estimates of canopy temperature detected a slight increase of the canopy surface temperature (connected to the change of leaf energy balance and in relation to partial stomatal closure) on the non-irrigated plants 1 week after the beginning of the trial. The use of infra-red thermometry for early detection of water shortage is discussed.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 491a-491
Author(s):  
James T. Cole ◽  
Janet C. Cole

An experiment was conducted to evaluate the performance of five ornamental grass species under reduced moisture. This experiment was conducted in the greenhouse with three water treatments for each species: 1) Well-watered plants were irrigated daily throughout the experiment, 2) acclimated-plants were exposed to four drought cycles prior to a final drought period in which measurements were taken, and 3) non-acclimated plants received daily irrigation until undergoing a drought cycle in which measurements were taken. A drought cycle was defined as the time from irrigation until Time Domain Reflectometry (TDR) measured 0 (zero). Preliminary observations determined the plants to be under severe stress, but capable of recovering at TDR measurements of 0. All plants were established from tillers of a single parent for each species. Two plants of each species for the three treatments were established in five blocks. Leaf water potential, osmotic potential, transpiration, stomatal resistance, and relative water content were measured during the drought cycle. At the end of the experiment the leaf area and root and shoot dry weights were determined, root to shoot ratio and leaf area ratio were calculated, and the plants were analyzed for macronutrient and micronutrient contents.


2021 ◽  
pp. 146808742110366
Author(s):  
Fukang Ma ◽  
Wei Yang ◽  
Yifang Wang ◽  
Junfeng Xu ◽  
Yufeng Li

The scavenging process of two stroke engine includes free exhaust, scavenging, and post intake process, which clears the burned gas in cylinder and suctions the fresh air for next cycle. The gas exchange process of Opposed-Piston Two-Stroke (OP2S) engine with gasoline direct injection (GDI) engine is a uniflow scavenging method between intake port and exhaust port. In order to investigate the characteristics of the gas exchange process in OP2S-GDI engine, a specific tracer gas method (TGM) was developed and the experiments were carried out to analyze the gas exchange performance under different intake and exhaust conditions and opposed-piston movement rule. The results show that gas exchange performance and trapped gas mass are significantly influenced by intake pressure and exhaust pressure. And it has a positive effect on the scavenging efficiency and the trapped air mass. Scavenging efficiency and trapped air mass are almost independent of pressure drop when the delivery ratio exceeds 1.4. Consequently, the delivery ratio ranges from 0.5 to 1.4 is chosen to achieve an optimization of steady running and minimum pump loss. The opposed piston motion phase difference only affects the scavenging timing. Scavenging performance is mainly influenced by scavenging timing and scavenging duration. With the increased phase difference of piston motion, the scavenging efficiency and delivery ratio increased gradually, the trapping efficiency would increase first and decrease then and reaches its maximum at 14°CA.


Sign in / Sign up

Export Citation Format

Share Document