scholarly journals Quantitative Trait Loci for Resistance to Potato Dry Rot Caused by Fusarium sambucinum

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 203
Author(s):  
Sylwester Sobkowiak ◽  
Marta Janiszewska ◽  
Emil Stefańczyk ◽  
Iwona Wasilewicz-Flis ◽  
Jadwiga Śliwka

Tuber dry rot is an important disease of potato caused by soil and seed-borne pathogens of the Fusarium genus leading to losses that may reach 60% of the yield. The goal of this work was to study the inheritance of the dry rot resistance in two diploid potato hybrid populations (11-36 and 12-3) with complex pedigrees, including several wild Solanum spp. We used an aggressive isolate of F. sambucinum for phenotyping both progenies, parents, and standard potato cultivars in laboratory tuber tests, in three subsequent years. The QTL for dry rot resistance were mapped by interval mapping on existing genetic maps of both mapping populations. The most important and reproducible QTL for this trait was mapped on chromosome I and additional year- and population-specific QTL were mapped on chromosomes II, VII, IX, XI, and XII, confirming polygenic control of this resistance. This is the first study mapping the loci affecting tuber dry rot resistance in potato genome that can contribute to better understanding of potato-F. sambucinum interaction and to more efficient breeding of resistant potato cultivars.

Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 604
Author(s):  
Paolo Vitale ◽  
Fabio Fania ◽  
Salvatore Esposito ◽  
Ivano Pecorella ◽  
Nicola Pecchioni ◽  
...  

Traits such as plant height (PH), juvenile growth habit (GH), heading date (HD), and tiller number are important for both increasing yield potential and improving crop adaptation to climate change. In the present study, these traits were investigated by using the same bi-parental population at early (F2 and F2-derived F3 families) and late (F6 and F7, recombinant inbred lines, RILs) generations to detect quantitative trait loci (QTLs) and search for candidate genes. A total of 176 and 178 lines were genotyped by the wheat Illumina 25K Infinium SNP array. The two genetic maps spanned 2486.97 cM and 3732.84 cM in length, for the F2 and RILs, respectively. QTLs explaining the highest phenotypic variation were found on chromosomes 2B, 2D, 5A, and 7D for HD and GH, whereas those for PH were found on chromosomes 4B and 4D. Several QTL detected in the early generations (i.e., PH and tiller number) were not detected in the late generations as they were due to dominance effects. Some of the identified QTLs co-mapped to well-known adaptive genes (i.e., Ppd-1, Vrn-1, and Rht-1). Other putative candidate genes were identified for each trait, of which PINE1 and PIF4 may be considered new for GH and TTN in wheat. The use of a large F2 mapping population combined with NGS-based genotyping techniques could improve map resolution and allow closer QTL tagging.


Author(s):  
Priyanka Choudhary ◽  
Ramesh Chand ◽  
Anil Kumar Singh

Background: Cercospora leaf spot (CLS) is a fungal disease of mungbean [Vigna radiata (L.) Wilczek] caused by Cercospora canescens and now emerged as an important biotic stress. A better understanding of the genetics of CLS resistance will help in formulating efficient breeding procedures in mungbean.Methods: The present investigation focused on genetics of CLS resistance through generation mean analysis (six parameter model) in two intra-specific mungbean crosses namely, Kopergaon × HUM12 and Kopergaon × ML1720. Four quantitative disease resistance components, viz., Area under disease progress curve (AUDPC), Incubation period (IP), Latent period (LP) and degree of sporulation (SP) were studied.Result: A high correlation of AUDPC with latent period (r = –0.68 to –0.79, P less than 0.0001) and SP (r = 0.72 to -0.81, P less than 0.0001) advocated that both are main contributor for CLS disease development. High heterosis along with high heritability in terms of AUDPC ( greater than 0.09) indicated the importance of genetic factor(s) in controlling CLS resistance. Generation mean analysis of both the crosses revealed duplicate epistatic interaction and involvement of two genes for CLS resistance in terms of AUDPC. This study supports oligogenic nature of inheritance, advocating AUDPC along with IP, LP and SP as important disease indicator for selection of CLS resistance in mungbean.


Genetics ◽  
1995 ◽  
Vol 140 (3) ◽  
pp. 1105-1109
Author(s):  
T Mitchell-Olds

Abstract The genetic basis of heterosis has implications for many problems in genetics and evolution. Heterosis and inbreeding depression affect human genetic diseases, maintenance of genetic variation, evolution of breeding systems, agricultural productivity, and conservation biology. Despite decades of theoretical and empirical studies, the genetic basis of heterosis has remained unclear. I mapped viability loci contributing to heterosis in Arabidopsis. An overdominant factor with large effects on viability mapped to a short interval on chromosome I. Homozygotes had 50% lower viability than heterozygotes in this chromosomal region. Statistical analysis of viability data in this cross indicates that observed viability heterosis is better explained by functional overdominance than by pseudo-overdominance. Overdominance sometimes may be an important cause of hybrid vigor, especially in habitually inbreeding species. Finally, I developed a maximum likelihood interval mapping procedure that can be used to examine chromosomal regions showing segregation distortion or viability selection.


Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 196
Author(s):  
Sadal Hwang ◽  
Tong Geon Lee

Genetic mapping studies provide improved estimates for novel genomic loci, allelic effects and gene action controlling important traits. Such mapping studies are regularly performed by using a combination of genotypic data (e.g., genotyping markers tagging genetic variation within populations) and phenotypic data of appropriately structured mapping populations. Randomly obtained DNA information and more recent high-throughput genome sequencing efforts have dramatically increased the ability to obtain genetic markers for any plant species. Despite the presence of constantly and rapidly increasing genotypic data, necessary steps to determine whether specific markers can be associated with genetic variation may often be initially neglected, meaning that ever-growing genotypic markers do not necessarily maximize the power of mapping studies and often generate false results. To address this issue, we present a framework for analyzing genotypic data while developing a genetic linkage map. Our goal is to raise awareness of a stepwise procedure in the development of genetic maps as well as to outline the current and potential contribution of this procedure to minimize bias caused by errors in genotypic datasets. Empirical results obtained from the R/qtl package for the statistical language/software R are prepared with details of how we handled genotypic data to develop the genetic map of a major plant species. This study provides a stepwise procedure to correct pervasive errors in genotypic data while developing genetic maps. For use in custom follow-up studies, we provide input files and written R codes.


2013 ◽  
Vol 40 (2) ◽  
pp. 95-106 ◽  
Author(s):  
Baozhu Guo ◽  
Manish K. Pandey ◽  
Guohao He ◽  
Xinyou Zhang ◽  
Boshou Liao ◽  
...  

ABSTRACT The competitiveness of peanuts in domestic and global markets has been threatened by losses in productivity and quality that are attributed to diseases, pests, environmental stresses and allergy or food safety issues. Narrow genetic diversity and a deficiency of polymorphic DNA markers severely hindered construction of dense genetic maps and quantitative trait loci (QTL) mapping in order to deploy linked markers in marker-assisted peanut improvement. The U.S. Peanut Genome Initiative (PGI) was launched in 2004, and expanded to a global effort in 2006 to address these issues through coordination of international efforts in genome research beginning with molecular marker development and improvement of map resolution and coverage. Ultimately, a peanut genome sequencing project was launched in 2012 by the Peanut Genome Consortium (PGC). We reviewed the progress for accelerated development of peanut genomic resources in peanut, such as generation of expressed sequenced tags (ESTs) (252,832 ESTs as December 2012 in the public NCBI EST database), development of molecular markers (over 15,518 SSRs), and construction of peanut genetic linkage maps, in particular for cultivated peanut. Several consensus genetic maps have been constructed, and there are examples of recent international efforts to develop high density maps. An international reference consensus genetic map was developed recently with 897 marker loci based on 11 published mapping populations. Furthermore, a high-density integrated consensus map of cultivated peanut and wild diploid relatives also has been developed, which was enriched further with 3693 marker loci on a single map by adding information from five new genetic mapping populations to the published reference consensus map.


2010 ◽  
Vol 10 (4) ◽  
pp. 321-328 ◽  
Author(s):  
Tatiana Barbosa Rosado ◽  
Rafael Simões Tomaz ◽  
Marcio Fernandes Ribeiro Junior ◽  
Antônio Marcos Rosado ◽  
Lúcio Mauro da Silva Guimarães ◽  
...  

In Brazil the rust caused by Puccinia psidii Winter stands out as the most important disease of eucalyptus. The use of resistant genotypes is the main control method, which makes the detection of markers linked to rust resistance essential to the selection of resistant genotypes. In this study, an F1 progeny of 131 plants from interspecific crossings of Eucalyptus was used to identify markers linked to resistance genes for this pathogen. An integrated map was constructed for linkage group three based on microsatellite markers. For QTL mapping two methodologies based on alleles identical-by-descent (IBD) were used: single marker analysis of Haseman and Elston and the interval mapping procedure of Fulker and Cardon. Both methods showed significant association for the Embra 125 marker.The QTL that explained 42 % of the phenotypic variation was mapped to 0.02 cM of this marker by the Fulker and Cardon. Marker Embra 125 has potential use in assisted selection, thus increasing the efficiency of the selection of resistant genotypes.


2018 ◽  
Author(s):  
André Ricardo Oliveira Conson ◽  
Cristiane Hayumi Taniguti ◽  
Rodrigo Rampazo Amadeu ◽  
Isabela Aparecida Araújo Andreotti ◽  
Livia Moura de Souza ◽  
...  

AbstractRubber tree (Hevea brasiliensis) cultivation is the main source of natural rubber worldwide and has been extended to areas with suboptimal climates and lengthy drought periods; this transition affects growth and latex production. High-density genetic maps with reliable markers support precise mapping of quantitative trait loci (QTL), which can help reveal the complex genome of the species, provide tools to enhance molecular breeding, and shorten the breeding cycle. In this study, QTL mapping of the stem diameter, tree height, and number of whorls was performed for a full-sibling population derived from a GT1 and RRIM701 cross. A total of 225 simple sequence repeats (SSRs) and 186 single-nucleotide polymorphism (SNP) markers were used to construct a base map with 18 linkage groups and to anchor 671 SNPs from genotyping by sequencing (GBS) to produce a very dense linkage map with small intervals between loci. The final map was composed of 1,079 markers, spanned 3,779.7 cM with an average marker density of 3.5 cM, and showed collinearity between markers from previous studies. Significant variation in phenotypic characteristics was found over a 59-month evaluation period with a total of 38 QTLs being identified through a composite interval mapping method. Linkage group 4 showed the greatest number of QTLs (7), with phenotypic explained values varying from 7.67% to 14.07%. Additionally, we estimated segregation patterns, dominance, and additive effects for each QTL. A total of 53 significant effects for stem diameter were observed, and these effects were mostly related to additivity in the GT1 clone. Associating accurate genome assemblies and genetic maps represents a promising strategy for identifying the genetic basis of phenotypic traits in rubber trees. Then, further research can benefit from the QTLs identified herein, providing a better understanding of the key determinant genes associated with growth of Hevea brasiliensis under limiting water conditions.


2021 ◽  
Author(s):  
Mahmoud A Elattar ◽  
Benjamin Karikari ◽  
Shuguang Li ◽  
Shiyu Song ◽  
Yongce Cao ◽  
...  

Abstract Dissecting the genetic mechanism underlying seed size, shape and weight is essential to these traits for enhancing soybean cultivars. High-density genetic maps of two recombinant inbred line populations, LM6 and ZM6, evaluated in multiple environments to identify candidate genes behind seed-related traits major and stable QTLs. A total of 239 and 43 M-QTL were mapped by composite interval mapping and mixed-model based composite interval mapping approaches, respectively, from which 22 common QTLs including four major and novel QTLs. CIM and MCIM approaches identified 180 and 18 novel M-QTLs, respectively. Moreover, 18 QTLs showed significant AE effects, and 40 pairwise of the identified QTLs exhibited digenic epistatic effects. Seed flatness index QTLs (34 QTLs) were identified and reported for the first time. Seven QTL clusters underlying the inheritance of seed size, shape and weight on genomic regions of chromosomes 3, 4, 5, 7, 9, 17 and 19 were identified. Gene annotations, gene ontology (GO) enrichment and RNA-seq analyses identified 47 candidate genes for seed-related traits within the genomic regions of those 7 QTL clusters. These genes are highly expressed in seed-related tissues and nodules, that might be deemed as potential candidate genes regulating the above traits in soybean. This study provides detailed information for the genetic bases of the studied traits and candidate genes that could be efficiently implemented by soybean breeders for fine mapping and gene cloning as well as for MAS targeted at improving these traits individually or concurrently.


2019 ◽  
Author(s):  
Sagar S Datir ◽  
Saleem Yousf ◽  
Shilpy Sharma ◽  
Mohit Kochle ◽  
Ameeta Ravikumar ◽  
...  

AbstractCold-induced sweetening (CIS) causes a great loss to the potato (Solanum tuberosum L.) processing industry wherein selection of potato genotypes using biochemical information through marker-trait associations has found to be advantageous. In the present study, we have performed nuclear magnetic resonance (NMR) spectroscopy-based metabolite profiling on tubers from five potato cultivars (Atlantic, Frito Lay-1533, Kufri Jyoti, Kufri Pukhraj, and PU1) differing in their CIS ability and processing characteristics at harvest and after one month of cold storage at 4°C. A total of 39 water-soluble metabolites were detected using 1H NMR. Multivariate statistical analysis indicated significant differences in metabolite profiles between processing and non-processing potato cultivars. Further analysis revealed distinct metabolite perturbations as induced by cold storage in both types of cultivars wherein significantly affected metabolites were categorized mainly as sugars, sugar alcohols, amino acids, and organic acids. Significant metabolic perturbations were used to carry out metabolic pathway analysis that in turn tracked 130 genes encoding enzymes (involved directly and/or indirectly) involved in CIS pathway using potato genome sequence survey data. Based on the metabolite perturbations, the possible relevant metabolite biomarkers, significantly affected metabolic pathways, and key candidate genes responsible for the observed metabolite variation were identified. Overall, studies provided new insights in further manipulation of specific metabolites playing a crucial role in determining the cold-induced ability and processing quality of potato cultivars for improved quality traits.HighlightMetabolomic profiling using 1D 1H-NMR and bioinformatics analysis of potato cultivars for the identification of metabolites and genes controlling biochemical pathways in cold-stored potato tubers


Sign in / Sign up

Export Citation Format

Share Document