scholarly journals Plants from Urban Parks as Valuable Cosmetic Ingredients: Green Extraction, Chemical Composition and Activity

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 204
Author(s):  
Marijan Marijan ◽  
Jasna Jablan ◽  
Lejsa Jakupović ◽  
Mario Jug ◽  
Eva Marguí ◽  
...  

The research on the possibilities of using biowaste from urban green areas is scarce. In this work, four plants, widely distributed in urban parks in Central Europe (Lotus corniculatus, Medicago lupulina, Knautia arvensis and Plantago major) were extracted using eco-friendly solvents based either on aqueous cyclodextrin solutions (hydroxypropyl-β-cyclodextrin or γ-cyclodextrin) or natural deep eutectic solvents based on glycerol, betaine and glucose. Metal content was determined using total reflection X-ray fluorescence (TXRF). The content of selected metabolites was determined using UV-VIS spectrophotometric methods and HPLC. Skin-related bioactivity was assessed using tyrosinase and elastase inhibition assays. The selected plants contained metals beneficial for skin health, such as zinc and calcium, while having a low content of toxic heavy metals. The extracts contained the bioactive phenolics such as quercetin, kaempferol, luteolin and apigenin. L. corniculatus was the most potent tyrosinase inhibitor, while K. arvensis showed the most pronounced elastase inhibitory activity. The employed solvents actively contributed to the observed bioactivity. The results indicate that the biowaste obtained from urban parks represents an ecologically acceptable alternative to conventional cultivation for the preparation of ecologically acceptable, high-value cosmetic products.

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ana Bjelić ◽  
Brigita Hočevar ◽  
Miha Grilc ◽  
Uroš Novak ◽  
Blaž Likozar

AbstractConventional biorefinery processes are complex, engineered and energy-intensive, where biomass fractionation, a key functional step for the production of biomass-derived chemical substances, demands industrial organic solvents and harsh, environmentally harmful reaction conditions. There is a timely, clear and unmet economic need for a systematic, robust and affordable conversion method technology to become greener, sustainable and cost-effective. In this perspective, deep eutectic solvents (DESs) have been envisaged as the most advanced novel polar liquids that are entirely made of natural, molecular compounds that are capable of an association via hydrogen bonding interactions. DES has quickly emerged in various application functions thanks to a formulations’ simple preparation. These molecules themselves are biobased, renewable, biodegradable and eco-friendly. The present experimental review is providing the state of the art topical overview of trends regarding the employment of DESs in investigated biorefinery-related techniques. This review covers DESs for lignocellulosic component isolation, applications as (co)catalysts and their functionality range in biocatalysis. Furthermore, a special section of the DESs recyclability is included. For DESs to unlock numerous new (reactive) possibilities in future biorefineries, the critical estimation of its complexity in the reaction, separation, or fractionation medium should be addressed more in future studies.


2021 ◽  
Vol 23 (6) ◽  
pp. 3915-3924
Author(s):  
Akshay Malik ◽  
Hemant K. Kashyap

The observation of the prepeak in the simulated total X-ray scattering structure function (S(q)) reveals the presence of intermediate-range structural heterogeneity in hydrophobic deep eutectic solvents.


2021 ◽  
pp. 117323
Author(s):  
Maria F. Nava-Ocampo ◽  
Lamya Al Fuhaid ◽  
Robert Verpoorte ◽  
Young Hae Choi ◽  
Mark C.M. van Loosdrecht ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 582
Author(s):  
Inês Mansinhos ◽  
Sandra Gonçalves ◽  
Raquel Rodríguez-Solana ◽  
José Luis Ordóñez-Díaz ◽  
José Manuel Moreno-Rojas ◽  
...  

The present study aimed at evaluating the effectiveness of different natural deep eutectic solvents (NADES) on the extraction of phenolic compounds from Lavandula pedunculata subsp. lusitanica (Chaytor) Franco, on the antioxidant activity, and acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and tyrosinase (Tyr) inhibitory capacities. Ten different NADES were used in this research and compared with conventional solvents. Ultrasound-assisted extraction (UAE) for 60 min proved to be the best extraction condition, and proline:lactic acid (1:1) and choline chloride:urea (1:2) extracts showed the highest total phenolic contents (56.00 ± 0.77 mgGAE/gdw) and antioxidant activity [64.35 ± 1.74 mgTE/gdw and 72.13 ± 0.97 mgTE/gdw in 2.2-diphenyl-1-picrylhydrazyl (DPPH) and 2.2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods, respectively]. These extracts also exhibited enzymes inhibitory capacity particularly against Tyr and AChE. Even so, organic acid-based NADES showed to be the best extractants producing extracts with considerable ability to inhibit enzymes. Twenty-four phenolic compounds were identified by HPLC-HRMS, being rosmarinic acid, ferulic acid and salvianolic acid B the major compounds. The results confirmed that the combination of UAE and NADES provide an excellent alternative to organic solvents for sustainable and green extraction, and have huge potential for use in industrial applications involving the extraction of bioactive compounds from plants.


2019 ◽  
pp. 61-81 ◽  
Author(s):  
Henni Vanda ◽  
Robert Verpoorte ◽  
Peter G. L. Klinkhamer ◽  
Young H. Choi

Sign in / Sign up

Export Citation Format

Share Document