scholarly journals Arbuscular Mycorrhizal Fungi Modulate the Crop Performance and Metabolic Profile of Saffron in Soilless Cultivation

Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 232 ◽  
Author(s):  
Matteo Caser ◽  
Sonia Demasi ◽  
Íris Marisa Maxaieie Victorino ◽  
Dario Donno ◽  
Antonella Faccio ◽  
...  

Saffron (Crocus sativus L.) is cultivated worldwide. Its stigmas represent the highest-priced spice and contain bioactive compounds beneficial for human health. Saffron cultivation commonly occurs in open field, and spice yield can vary greatly, from 0.15 to 1.5 g m−2, based on several agronomic and climatic factors. In this study, we evaluated saffron cultivation in soilless systems, where plants can benefit from a wealth of nutrients without competition with pathogens or stresses related to nutrient-soil interaction. In addition, as plant nutrient and water uptake can be enhanced by the symbiosis with arbuscular mycorrhizal fungi (AMF), we also tested two inocula: a single species (Rhizophagus intraradices) or a mixture of R. intraradices and Funneliformis mosseae. After one cultivation cycle, we evaluated the spice yield, quality (ISO category), antioxidant activity, and bioactive compound contents of saffron produced in soilless systems and the effect of the applied AMF inocula. Spice yield in soilless systems (0.55 g m−2) was on average with that produced in open field, while presented a superior content of several health-promoting compounds, such as polyphenols, anthocyanins, vitamin C, and elevated antioxidant activity. The AMF symbiosis with saffron roots was verified by light and transmission electron microscopy. Inoculated corms showed larger replacement corms (+50% ca.). Corms inoculated with R. intraradices performed better than those inoculated with the mix in terms of spice quality (+90% ca.) and antioxidant activity (+88% ca.). Conversely, the mixture of R. intraradices and F. mosseae increased the polyphenol content (+343% ca.). Thus, soilless systems appeared as an effective alternative cultivation strategy for the production of high quality saffron. Further benefits can be obtained by the application of targeted AMF-based biostimulants.

Agronomy ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 12 ◽  
Author(s):  
Matteo Caser ◽  
Íris Marisa Maxaieie Victorino ◽  
Sonia Demasi ◽  
Andrea Berruti ◽  
Dario Donno ◽  
...  

Arbuscular mycorrhizal fungi (AMF) establish mutualistic symbiotic associations with plant roots and act as biofertilizers by enhancing plant nutrient and water uptake. Moreover, AMF colonization may influence the biosynthesis of plant bioactive compounds in medicinal and aromatic plants. There is limited information on AMF associations with Crocus sativus L. (saffron) roots and their effect on crop performances and spice quality. In the present work we verified the efficiency of root mycorrhization in potted conditions, then we evaluated the yield and quality of the saffron produced in two Alpine sites during two cultivation cycles with the application of AMF. Two inocula were applied, either a single-species (Rhizophagus intraradices) or a multi-species mixture (R. intraradices and Funneliformis mosseae). The trial conducted in potted conditions confirmed that both AMF commercial inocula established symbiotic relationships with saffron roots. The multi-species inoculation yielded the highest content of arbuscules in colonized portions of the root (100%), while the single-species was slightly less (82.9%) and no AMF were recorded in untreated control corms. In open-field conditions, AMF colonization of the root systems, flower production, and saffron yields were monitored, and bioactive compounds contents and antioxidant activity in the dried spice were analysed using spectrophotometry and high performance liquid chromatography. Overall, the saffron produced was high quality (ISO category) and had high contents of bioactive compounds, with very high total polyphenol content and elevated antioxidant activity. The use of arbuscular mycorrhizal symbionts as biostimulants positively affected saffron cultivation, improving the crop performances and the content of important nutraceutical compounds. In particular, the inoculum composed by R. intraradices and F. mosseae increased flower production and the saffron yield. R. intraradices alone enhanced the spice antioxidant activity and the content of bioactive compounds such as picrocrocin, crocin II, and quercitrin. Since saffron is the world’s highest priced spice, the increases in yield and quality obtained using AMF suggests that farms in marginal areas such as alpine sites can increase profitability by inoculating saffron fields with arbuscular mycorrhiza.


2012 ◽  
Vol 95 ◽  
pp. S319-S324 ◽  
Author(s):  
Herminia Alejandra Hernández-Ortega ◽  
Alejandro Alarcón ◽  
Ronald Ferrera-Cerrato ◽  
Hilda Araceli Zavaleta-Mancera ◽  
Humberto Antonio López-Delgado ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 375 ◽  
Author(s):  
Nadezhda Golubkina ◽  
Lidia Logvinenko ◽  
Maxim Novitsky ◽  
Svetlana Zamana ◽  
Sergey Sokolov ◽  
...  

Utilization of arbuscular mycorrhizal fungi (AMF) for enhancing growth and development as well as production of essential oil in aromatic plants has been increasingly drawing research interest. In order to assess the AMF effects on different aromatic species, an open-field experiment was carried out using Artemisia dracunculus (tarragon), Lavandula angustifolia (lavender) and Hyssopus officinalis (hyssop). AMF stimulated the growth of tarragon and lavender plants, whereas hyssop showed a slight developmental slowing; nonetheless, a significant increase in essential oil content in the three species was seen. AMF application increased the biomass of A. dracunculus and H. officinalis by 20–35%. No differences in antioxidant activity and phenolics content were recorded at harvest between the control and AMF-inoculated plants, but the latter showed a significant increase in antioxidant status upon storage at high temperature and humidity compared to the untreated control. The enhancement of abiotic stress resistance during storage in plants inoculated with AMF was the highest in A. dracunculus, and the lowest in H. officinalis, while the untreated control plants showed a significant decrease in phenolics, ascorbic acid and chlorophyll content, as well as antioxidant activity, upon the abiotic stress. AMF inoculation differentially affected the mineral composition, increasing the accumulation of Se, I and Zn in A. dracunculus, and decreasing the levels of heavy metals and Co, Fe, Li, Mn in H. officinalis. Based on the outcome of the present research, AMF inoculation resulted in a significant enhancement of the overall performances of A. dracunculus, L. angustifolia and H. officinalis, and also in the improvement of plant antioxidant status upon storage in stress conditions.


Sign in / Sign up

Export Citation Format

Share Document