scholarly journals Evaluation of Organic Spring Cover Crop Termination Practices to Enhance Rolling/Crimping

Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 519
Author(s):  
Price ◽  
Duzy ◽  
McElroy ◽  
Li

With organic farming hectarage and cover crop interest increasing throughout the United States, effectively timed cover crop termination practices are needed that can be utilized in organic conservation tillage production systems. Four commercially available termination treatments approved by Organic Materials Review Institute (OMRI) were evaluated, immediately following mechanical termination with a cover crop roller/crimper and compared to a synthetic herbicide termination to access termination rates. Treatments included rolling/crimping followed by (1) 20% vinegar solution (28 L a.i. ha−1 acetic acid), (2) 2.5 L a.i. ha−1 45% cinnamon (Cinnamomum verum L.) oil (cinnamaldehyde, eugenol, eugenol acetate)/45% clove oil (eugenol, acetyl eugenol, caryophyllene) mixture, (3) 0.15 mm clear polyethylene sheeting applied with edges manually tucked into the soil for 28 days over the entire plot area (clear plastic), (4) broadcast flame emitting 1100 °C applied at 1.2 k/h (flame), (5) glyphosate applied at 1.12 kg a.i. ha−1 (this non-OMRI-approved, non-organic conservation tillage cover crop termination standard practice was included to help ascertain desiccation, regrowth, and economics), and (6) a non-treated control. Five cover crop species were evaluated: (1) hairy vetch (Vicia villosa Roth), (2) crimson clover (Trifolium incarnatum L.), (3) cereal rye (Secale cereale L.), (4) Austrian winter pea (Pisum sativum L.), and (5) rape (Brassica napus L.). Three termination timings occurred at four-week intervals beginning mid-March each year. In April or May, organic producers are most likely to be successful using a roller crimper as either a broadcast flamer for terminating all winter covers evaluated, or utilizing clear plastic for hairy vetch, winter peas, and cereal rye. Ineffectiveness and regrowth concerns following cover crop termination in March are substantial. Commercially available vinegar and cinnamon/clove oil solutions provided little predictable termination, and producers attempting to use these OMRI-approved products will likely resort to cover crop incorporation, or mowing, to terminate covers if no other practice is readily available.

2017 ◽  
Vol 31 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Cody D. Cornelius ◽  
Kevin W. Bradley

The recent interest in cover crops as component of Midwest corn and soybean production systems has led to the need for additional research, including the effects of residual corn and soybean herbicide treatments on fall cover crop establishment. Field studies were conducted in 2013, 2014, and 2015 in Columbia, Missouri to investigate the effects of common residual herbicides applied in corn and soybean on establishment of winter wheat, tillage radish, cereal rye, crimson clover, winter oat, Austrian winter pea, Italian ryegrass, and hairy vetch. Cover crops were evaluated for stand and biomass reduction 28 d after emergence (DAE). Rainfall from herbicide application to cover crop seeding date was much greater in 2014 and 2015, which resulted in less carryover in these years compared to 2013. When averaged across all herbicides evaluated in these experiments, the general order of sensitivity of cover crops to herbicide carryover, from greatest to least was Austrian winter pea=crimson clover>oilseed radish>Italian ryegrass>hairy vetch>wheat >winter oat>cereal rye. Cereal rye had the fewest instances of biomass or stand reduction with only four out of the 27 herbicides adversely effecting establishment. Pyroxasulfone consistently reduced Italian ryegrass and winter oat biomass at least 67% in both the corn and soybean experiments. In the soybean experiment, imazethapyr- and fomesafen-containing products resulted in severe stand and biomass reduction in both years while flumetsulam-containing products resulted in the greatest carryover symptoms in the corn experiment. Results from these experiments suggest that several commonly used corn and soybean herbicides have the potential to hinder cover crop establishment, but the severity of damage will depend on weather, cover crop species, and the specific herbicide combination.


2016 ◽  
Vol 30 (2) ◽  
pp. 415-422 ◽  
Author(s):  
Matthew S. Wiggins ◽  
Robert M. Hayes ◽  
Lawrence E. Steckel

Glyphosate-resistant (GR) weeds, especially GR Palmer amaranth, are very problematic in cotton-producing areas of the midsouthern region of the United States. Growers rely heavily on PRE residual herbicides to control Palmer amaranth since few effective POST options exist. Interest in integrating high-residue cover crops with existing herbicide programs to combat GR weeds has increased. Research was conducted in 2013 and 2014 in Tennessee to evaluate GR Palmer amaranth control when integrating cover crops and PRE residual herbicides. Cereal rye, crimson clover, hairy vetch, winter wheat, and combinations of one grass plus one legume were compared with winter weeds without a cover crop followed by fluometuron or acetochlor applied PRE. Biomass of cover crops was determined prior to termination 3 wk before planting. Combinations of grass and legume cover crops accumulated the most biomass (> 3,500 kg ha−1) but by 28 d after application (DAA) the cereal rye and wheat provided the best Palmer amaranth control. Crimson clover and hairy vetch treatments had the greatest number of Palmer amaranth. These cereal and legume blends reduced Palmer amaranth emergence by half compared to non–cover-treated areas. Fluometuron and acetochlor controlled Palmer amaranth 95 and 89%, respectively, at 14 DAA and 54 and 62%, respectively, at 28 DAA. Cover crops in combination with a PRE herbicide did not adequately control Palmer amaranth.


2021 ◽  
pp. 1-25
Author(s):  
Zahoor A. Ganie ◽  
Amit J. Jhala

Abstract Glyphosate is the most widely used herbicide in the United States; however, concern about increasing residues of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) in soil is escalating. There is a lack of scientific literature examining the response of cover crops to soil residues of glyphosate or AMPA. The objectives of this study were to evaluate the impact of glyphosate or AMPA residues in silty clay loam soil on emergence, growth, and biomass of cover crops, including cereal rye, crimson clover, field pea, hairy vetch, and winter wheat, as well as their germination in a 0.07% (0.7 g/L) solution of AMPA or glyphosate. Greenhouse studies were conducted at the University of Nebraska-Lincoln to determine the dose response of broadleaf and grass cover crops to soil-applied glyphosate or AMPA. The results indicated that soil treated with glyphosate or AMPA up to 105 mg ae kg–1 of soil had no effect on the emergence, growth, above-ground biomass, and root biomass of any of the cover crop species tested. To evaluate the impact of AMPA or glyphosate on the seed germination of cover crop species, seeds were soaked in petri plates filled with a 0.7 g L−1 solution of AMPA or glyphosate. There was no effect of AMPA on seed germination of any of the cover crop species tested. Seed germination of crimson clover and field pea in a 0.7 g L−1 solution of glyphosate was comparable to the nontreated control; however, the germination of cereal rye, hairy vetch, and winter wheat was reduced by 48%, 75%, and 66%, respectively, compared to the nontreated control. The results suggested that glyphosate or AMPA up to 105 mg ae kg–1 in silt clay loam soil is unlikely to cause any negative effect on the evaluated cover crop species.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 640 ◽  
Author(s):  
Kornecki ◽  
Price

A three year on-farm conservation-tillage experiment was initiated in fall of 2008 at Randle Farm LLC, located in Auburn, AL. Our objective was to evaluate and demonstrate implementation of tenable conservation vegetable production practices using high amounts of cover crop residues that reduce soil erosion, improve soil productivity and quality, reduce energy costs, and promote farm profitability. Cereal rye, crimson clover, and a rye and crimson clover mixture were evaluated as cover crops; these were terminated using either a prototype two-stage roller/crimper alone or followed by an application of 2.5 L a.i. ha−1 45% cinnamon (Cinnamomum verum L.) oil (cinnamaldehyde, eugenol, eugenol acetate,)/45% clove oil (eugenol, acetyl eugenol, caryophyllene) mixture in the spring prior to crop establishment. A winter fallow conventional tillage system was included for comparison. Watermelons, cantaloupes, and okra then were transplanted into each cover crop and termination treatment combination in mid-May, utilizing a modified transplanter equipped with a custom fitted subsoiling shank and row cleaners to alleviate soil compaction and facilitate transplanting. In all years, all cover crop treatments exceeded 4000 kg ha−1and in 2009 and 2011, exceeded 6000 kg ha−1. At 21 days after termination in 2010 when the slowest termination occurred, higher termination rates were obtained for cereal rye (95% to 96%) followed by lower termination rates for the clover/rye mixture (83% to 85%); the lowest termination rates were obtained for crimson clover (66% to 68%). Commercially available cinnamon/clove oil solution provided little cover crop termination above that provided by a roller crimper alone. Volumetric soil moisture content for rolled/crimped cover crops was consistently higher compared to the conventional system, indicating that flattened and desiccated cover crop residue provided water conservation. In 2010 and 2011, yields for cantaloupe, okra, and watermelons were consistently higher for the conventional system compared with no-till system with cover crops likely due to weed cultivation limitations and insect pressure. Future studies need to focus on weed control and integrated pest management.


1988 ◽  
Vol 34 (3) ◽  
pp. 201-206 ◽  
Author(s):  
C. S. Rothrock ◽  
W. L. Hargrove

The influence of winter legume cover crops and of tillage on soil populations of fungal genera containing plant pathogenic species in the subsequent summer sorghum crop were examined in field studies. Legume cover crops significantly increased populations of Pythium spp. throughout the sorghum crop compared with a rye cover crop or no cover crop. This stimulation of the populations of Pythium spp. was not solely due to colonization of cover-crop residue, as populations were significantly greater at the time the legume cover crop was desiccated. Removal of aboveground residue generally decreased populations of Pythium spp. in soil. Incorporation of residue by tillage increased populations of Pythium spp. at some sampling dates. Legumes differed in the magnitude of stimulation, with hairy vetch stimulating Pythium spp. more than crimson clover. Cover crop treatments did not consistently influence soil populations of Fusarium spp., Rhizoctonia solani, Rhizoctonia-like binucleate fungi, or Macrophomina phaseolina. Macrophomina phaseolina populations were significantly greater under no tillage.


2019 ◽  
Vol 34 (1) ◽  
pp. 48-54
Author(s):  
Kara B. Pittman ◽  
Charles W. Cahoon ◽  
Kevin W. Bamber ◽  
Lucas S. Rector ◽  
Michael L. Flessner

AbstractCover crops provide a number of agronomic benefits, including weed suppression, which is important as cases of herbicide resistance continue to rise. To effectively suppress weeds, high cover crop biomass is needed, which necessitates later termination timing. Cover crop termination is important to mitigate potential planting issues and prevent surviving cover crop competition with cash crops. Field studies were conducted in Virginia to determine the most effective herbicide options alone or combined with glyphosate or paraquat to terminate a range of cover crop species. Results revealed that grass cover crop species were controlled (94% to 98%) by glyphosate alone 4 wk after application (WAA). Overall, legume species varied in response to the single active-ingredient treatments, and control increased with the addition of glyphosate or paraquat. Mixes with glyphosate provided better control of crimson clover and hairy vetch by 7% to 8% compared with mixes containing paraquat 4 WAA. Mix partner did not influence control of Austrian winter pea. No treatment adequately controlled rapeseed in this study, with a maximum of 58% control observed with single active-ingredient treatments and 62% control with mixes. Height reduction for all cover crop species supports visible rating data. Rapeseed should be terminated when smaller, which could negate weed suppressive benefits from this cover crop species. Growers should consider herbicide selection and termination timing in their cover crop plan to ensure effective termination.


2017 ◽  
Vol 31 (4) ◽  
pp. 514-522 ◽  
Author(s):  
Cody D. Cornelius ◽  
Kevin W. Bradley

The recent interest in cover crops as a component of Midwest corn and soybean production systems has led to a greater need to understand the most effective herbicide treatments for cover crop termination prior to planting corn or soybean. Previous research has shown that certain cover crop species can significantly reduce subsequent cash crop yields if not completely terminated. Two field experiments were conducted in 2013, 2014, and 2015 to determine the most effective herbicide program for the termination of winter wheat, cereal rye, crimson clover, Austrian winter pea, annual ryegrass, and hairy vetch; and cover crops were terminated in early April or early May. Visual control and above ground biomass reduction was determined 28 d after application (DAA). Control of grass cover crop species was often best with glyphosate alone or combined with 2,4-D, dicamba, or saflufenacil. The most consistent control of broadleaf cover crops occurred following treatment with glyphosate +2,4-D, dicamba, or saflufenacil. In general, control of cover crops was higher with early April applications compared to early May. In a separate study, control of 15-, 25-, and 75-cm tall annual ryegrass was highest with glyphosate at 2.8 kg ha−1or glyphosate at 1.4 kg ha−1plus clethodim at 0.136 kgha−1. Paraquat- or glufosinate-containing treatments did not provide adequate annual ryegrass control. For practitioners who desire higher levels of cover crop biomass, these results indicate that adequate levels of cover crop control can still be achieved in the late spring with certain herbicide treatments. But it is important to consider cover crop termination well in advance to ensure the most effective herbicide or herbicide combinations are used and the products are applied at the appropriate stage.


2017 ◽  
Vol 31 (4) ◽  
pp. 503-513 ◽  
Author(s):  
Cody D. Cornelius ◽  
Kevin W. Bradley

Field experiments were conducted in 2013, 2014, and 2015 in Columbia and Moberly, Missouri to determine the effects of cereal rye, Italian ryegrass, winter wheat, winter oat, crimson clover, Austrian winterpea, hairy vetch, oilseed radish, and cereal rye plus hairy vetch on winter and summer annual weed emergence in soybean. For comparison purposes, each experiment in each year included a Fall PRE, Spring PRE without residual, and Spring PRE residual herbicide programs. Cereal rye and cereal rye plus hairy vetch reduced winter annual weed emergence by 72 and 68%, respectively, but were not comparable to the Fall PRE which reduced winter annual weed emergence by 99%. The following spring, early-season waterhemp emergence was similar among treatments of cereal rye, cereal rye plus hairy vetch, and the Spring PRE residual herbicide program. In contrast, all cover crop species other than Italian ryegrass reduced late season waterhemp emergence between 21 and 40%, but were not comparable to the Spring PRE residual herbicide program, which reduced late season waterhemp emergence by 97%. All other summer annual weeds excluding waterhemp showed a similar response among cover crop and herbicide treatments. Overall, results from this experiment indicate that certain cover crops are able to suppress winter and summer annual weed emergence, but not to the extent of soil-applied residual herbicides.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Ted S. Kornecki ◽  
Corey M. Kichler

In a no-till system, there are many different methods available for terminating cover crops. Mechanical termination, utilizing rolling and crimping technology, is one method that injures the plant without cutting the stems. Another popular and commercially available method is mowing, but this can cause problems with cover crop re-growth and loose residue interfering with the planter during cash crop planting. A field experiment was conducted over three growing seasons in northern Alabama to determine the effects of different cover crops and termination methods on cantaloupe yield in a no-till system. Crimson clover, cereal rye, and hairy vetch cover crops were terminated using two different roller-crimpers, including a two-stage roller-crimper for four-wheel tractors and a powered roller-crimper for a two-wheel walk-behind tractor. Cover crop termination rates were evaluated one, two, and three weeks after termination. Three weeks after rolling, a higher termination rate was found for flail mowing (92%) compared to lower termination rates for a two-stage roller (86%) and powered roller-crimper (85%), while the control termination rate was only 49%. There were no significant differences in cantaloupe yield among the rolling treatments, which averaged 38,666 kg ha−1. However, yields were higher for cereal rye and hairy vetch cover crops (41,785 kg ha−1 and 42,000 kg ha−1) compared to crimson clover (32,213 kg ha−1).


1995 ◽  
Vol 10 (4) ◽  
pp. 157-162 ◽  
Author(s):  
N.G. Creamer ◽  
B. Plassman ◽  
M.A. Bennett ◽  
R.K. Wood ◽  
B.R. Stinner ◽  
...  

AbstractResidues of dead cover crops can suppress weeds by providing a mulch on the soil surface. The cover crop usually is killed with herbicides, but a mechanical method is desirable in systems intended to reduce chemical use. We designed and built an undercutter to kill cover crops by severing their roots while flattening the intact aboveground biomass on the surface of raised beds. We studied which cover crop species could be killed with the undercutter and compared the weed control potential of cover crop residues after flail mowing, sicklebar mowing, and undercutting.Whether a species was killed by the undercutter depended primarily on growth stage. Species that were in mid- to late bloom or beyond, including rye, hairy vetch, bigflower vetch, crimson clover, barley, and subterranean clover, were easily killed by undercutting. There were no differences in dry weights of broadleaf weeds between the undercut and simulated sicklebar mowed treatments, both of which had less weed biomass than the clean-tilled or flail-mowed plots.


Sign in / Sign up

Export Citation Format

Share Document