scholarly journals Automatic Classification of Chickpea Varieties Using Computer Vision Techniques

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 672 ◽  
Author(s):  
Pourdarbani ◽  
Sabzi ◽  
García-Amicis ◽  
García-Mateos ◽  
Molina-Martínez ◽  
...  

There are about 90 different varieties of chickpeas around the world. In Iran, where this study takes place, there are five species that are the most popular (Adel, Arman, Azad, Bevanij and Hashem), with different properties and prices. However, distinguishing them manually is difficult because they have very similar morphological characteristics. In this research, two different computer vision methods for the classification of the variety of chickpeas are proposed and compared. The images were captured with an industrial camera in Kermanshah, Iran. The first method is based on color and texture features extraction, followed by a selection of the most effective features, and classification with a hybrid of artificial neural networks and particle swarm optimization (ANN-PSO). The second method is not based on an explicit extraction of features; instead, image patches (RGB pixel values) are directly used as input for a three-layered backpropagation ANN. The first method achieved a correct classification rate (CCR) of 97.0%, while the second approach achieved a CCR of 99.3%. These results prove that visual classification of fruit varieties in agriculture can be done in a very precise way using a suitable method. Although both techniques are feasible, the second method is generic and more easily applicable to other types of crops, since it is not based on a set of given features.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Caio B. Wetterich ◽  
Ratnesh Kumar ◽  
Sindhuja Sankaran ◽  
José Belasque Junior ◽  
Reza Ehsani ◽  
...  

The overall objective of this work was to develop and evaluate computer vision and machine learning technique for classification of Huanglongbing-(HLB)-infected and healthy leaves using fluorescence imaging spectroscopy. The fluorescence images were segmented using normalized graph cut, and texture features were extracted from the segmented images using cooccurrence matrix. The extracted features were used as an input into the classifier, support vector machine (SVM). The classification results were evaluated based on classification accuracies and number of false positives and false negatives. The results indicated that the SVM could classify HLB-infected leaf fluorescence intensities with up to 90% classification accuracy. Though the fluorescence intensities from leaves collected in Brazil and the USA were different, the method shows potential for detecting HLB.


2018 ◽  
Vol 61 (5) ◽  
pp. 1497-1504
Author(s):  
Zhenjie Wang ◽  
Ke Sun ◽  
Lihui Du ◽  
Jian Yuan ◽  
Kang Tu ◽  
...  

Abstract. In this study, computer vision was used for the identification and classification of fungi on moldy paddy. To develop a rapid and efficient method for the classification of common fungal species found in stored paddy, computer vision was used to acquire images of individual colonies of growing fungi for three consecutive days. After image processing, the color, shape, and texture features were acquired and used in a subsequent discriminant analysis. Both linear (i.e., linear discriminant analysis and partial least squares discriminant analysis) and nonlinear (i.e., random forest and support vector machine [SVM]) pattern recognition models were employed for the classification of fungal colonies, and the results were compared. The results indicate that when using all of the features for three consecutive days, the performance of the nonlinear tools was superior to that of the linear tools, especially in the case of the SVM models, which achieved an accuracy of 100% on the calibration sets and an accuracy of 93.2% to 97.6% on the prediction sets. After sequential selection of projection algorithm, ten common features were selected for building the classification models. The results showed that the SVM model achieved an overall accuracy of 95.6%, 98.3%, and 99.0% on the prediction sets on days 2, 3, and 4, respectively. This work demonstrated that computer vision with several features is suitable for the identification and classification of fungi on moldy paddy based on the form of the individual colonies at an early growth stage during paddy storage. Keywords: Classification, Computer vision, Fungal colony, Feature selection, SVM.


Author(s):  
Nuwan Madusanka ◽  
Heung-Kook Choi ◽  
Jae-Hong So ◽  
Boo-Kyeong Choi

Background: In this study, we investigated the fusion of texture and morphometric features as a possible diagnostic biomarker for Alzheimer’s Disease (AD). Methods: In particular, we classified subjects with Alzheimer’s disease, Mild Cognitive Impairment (MCI) and Normal Control (NC) based on texture and morphometric features. Currently, neuropsychiatric categorization provides the ground truth for AD and MCI diagnosis. This can then be supported by biological data such as the results of imaging studies. Cerebral atrophy has been shown to correlate strongly with cognitive symptoms. Hence, Magnetic Resonance (MR) images of the brain are important resources for AD diagnosis. In the proposed method, we used three different types of features identified from structural MR images: Gabor, hippocampus morphometric, and Two Dimensional (2D) and Three Dimensional (3D) Gray Level Co-occurrence Matrix (GLCM). The experimental results, obtained using a 5-fold cross-validated Support Vector Machine (SVM) with 2DGLCM and 3DGLCM multi-feature fusion approaches, indicate that we achieved 81.05% ±1.34, 86.61% ±1.25 correct classification rate with 95% Confidence Interval (CI) falls between (80.75-81.35) and (86.33-86.89) respectively, 83.33%±2.15, 84.21%±1.42 sensitivity and 80.95%±1.52, 85.00%±1.24 specificity in our classification of AD against NC subjects, thus outperforming recent works found in the literature. For the classification of MCI against AD, the SVM achieved a 76.31% ± 2.18, 78.95% ±2.26 correct classification rate, 75.00% ±1.34, 76.19%±1.84 sensitivity and 77.78% ±1.14, 82.35% ±1.34 specificity. Results and Conclusion: The results of the third experiment, with MCI against NC, also showed that the multiclass SVM provided highly accurate classification results. These findings suggest that this approach is efficient and may be a promising strategy for obtaining better AD, MCI and NC classification performance.


2012 ◽  
Author(s):  
Ghafour Amouzad Mahdiraji ◽  
Azah Mohamed

Satu aspek penting dalam penilaian kualiti kuasa adalah pengesanan dan pengkelasan gangguan kualiti kuasa secara automatik yang memerlukan penggunaan teknik kepintaran buatan. Kertas kerja ini membentangkan penggunaan sistem pakar-kabur untuk pengkelasan gangguan voltan jangka masa pendek yang termasuk lendut voltan, ampul dan sampukan. Untuk memperolehi sifat unik bagi gangguan voltan, analisis jelmaan Fourier pantas dan teknik purataan punca min kuasa dua digunakan untuk menentukan parameter gangguan seperti tempoh masa, magnitud voltan pmk maksimum dan minimum. Berasaskan pada parameter ini, sebuah sistem pakar–kabur telah dibangunkan dengan mengset aturan kabur yang menimbangkan lima masukan dan tiga keluaran. Sistem ini direka bentuk untuk mengesan dan mengkelaskan tiga jenis gangguan voltan tempoh masa pendek dengan menentukan sama ada gangguan adalah gangguan ketika, gangguan seketika dan bukan gangguan lendut, ampul dan sampukan. Untuk mengesahkan kejituan sistem yang dicadangkan, ia telah diuji dengan gangguan voltan yang diperolehi dari pengawasan. Keputusan ujian menunjukkan bahawa sistem pakar–kabur yang dibangunkan telah memberikan kadar pengkelasan yang betul sebanyak 98.4 %. Kata kunci: Kualiti kuasa, sistem pakar–kabur, lendut, ampul dan sampukan One of the important aspects in power quality assessment is automated detection and classification of power quality disturbances which requires the use of artificial intelligent techniques. This paper presents the application of fuzzy–expert system for classification of short duration voltage disturbances which include voltage sag, swell and interruption. To obtain unique features of the voltage disturbances, fast Fourier transform analysis and root mean square averaging technique are utilized so as to determine the disturbance parameters such as duration, maximum and minimum rms voltage magnitudes. Based on these parameters, a fuzzy-expert system has been developed to set the fuzzy rules incorporating five inputs and three outputs. The system is designed for detecting and classifying the three types of short duration voltage disturbances, so as to determine whether the disturbance is instantaneous, momentary and non sag, swell and interruption. To verify the accuracy of the proposed system, it has been tested with recorded voltage disturbances obtained from monitoring. Tests results showed that the developed fuzzy–expert system gives a correct classification rate of 98.4 %. Key words: Power quality, fuzzy–expert system, sag, swell and interruption.


2019 ◽  
Vol 9 (7) ◽  
pp. 1385 ◽  
Author(s):  
Luca Donati ◽  
Eleonora Iotti ◽  
Giulio Mordonini ◽  
Andrea Prati

Visual classification of commercial products is a branch of the wider fields of object detection and feature extraction in computer vision, and, in particular, it is an important step in the creative workflow in fashion industries. Automatically classifying garment features makes both designers and data experts aware of their overall production, which is fundamental in order to organize marketing campaigns, avoid duplicates, categorize apparel products for e-commerce purposes, and so on. There are many different techniques for visual classification, ranging from standard image processing to machine learning approaches: this work, made by using and testing the aforementioned approaches in collaboration with Adidas AG™, describes a real-world study aimed at automatically recognizing and classifying logos, stripes, colors, and other features of clothing, solely from final rendering images of their products. Specifically, both deep learning and image processing techniques, such as template matching, were used. The result is a novel system for image recognition and feature extraction that has a high classification accuracy and which is reliable and robust enough to be used by a company like Adidas. This paper shows the main problems and proposed solutions in the development of this system, and the experimental results on the Adidas AG™ dataset.


2020 ◽  
Author(s):  
Chih-Shuan Huang ◽  
Ya-Han Huang ◽  
Din-Yuen Chan ◽  
Jar-Ferr Yang

Abstract Stereo matching is one of the most important topics in computer vision and aims at generating precise depth maps for various smart applications. The major challenge of stereo matching is to suppress inevitable errors occurring in smooth, occluded and discontinuous regions. In this paper, we propose a robust stereo matching system, which is based on segment-based superpixels, to design adaptive matching computation and dual-path refinement. After the selection of matching costs, we suggest the segment-based adaptive support weights for cost aggregation, instead of color similarity and spatial proximity, to achieve precise depth estimation. Then, the proposed dual-path depth refinement, which refers the texture features in a cross-based support region, corrects the inaccurate disparities to successively refine the depth maps with shape reserving. Specially for left-most and right most regions, the segment-based refinement can greatly improve the mismatched disparity holes. The experimental results show that the proposed system achieves higher accurate depth maps than the conventional stereo matching methods.


2017 ◽  
Vol 11 (46) ◽  
pp. 1-6
Author(s):  
Josede Jesus Salgado Patr�n ◽  
Johan Juli�n Molina Mosquera ◽  
Jes�s David Quintero ◽  
◽  
◽  
...  

Author(s):  
G. WISELIN JIJI ◽  
HENRY SELVARAJ ◽  
G. EVELIN SUJI

Nucleus segmentation is one of important steps in the automatic white blood cell differential counting. In this paper, we proposed a technique to segment images of the nucleus. We analyze a set of white-blood-cell-nucleus-based features using color fuzzy texture spectrum (Base 5). We applied artificial neural network for classification. We compared the results with moment based features. The classification performances are evaluated by class wise classification rates. The results show that the features using nucleus alone could be utilized to achieve a classification rate of 99.05% on the test sets.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Xuan Wei ◽  
Jin-Cheng He ◽  
Da-Peng Ye ◽  
Deng-Fei Jie

Maturity grading is important for the quality of fruits. Nondestructive maturity detection can be greatly beneficial to the consumer and fruit industry. In this paper, a hyperspectral image of navel oranges was obtained using a diffuse transmittance imaging based system. Multispectral indexes were built to identify the maturity with the hyperspectral technique. Five indexes were proposed to combine the spectra at wavelengths of 640, 760 nm (red edges), and 670 nm (for chlorophyll content) to grade the navel oranges into three maturity stages. The index of (T670+T760-T640)/(T670+T760+T640) seemed to be more appropriate to classify maturity, especially to distinguish immature oranges that can be straightly identified in accordance with the value of this index ((T670+T760-T640)/(T670+T760+T640)). Different indexes were used as the input of linear discriminate analysis (LDA) and of k-nearest neighbor (k-NN) algorithm to identify the maturity, and it was found that k-NN with (T670+T760-T640)/(T670+T760+T640) could reach the highest correct classification rate of 96.0%. The results showed that the built index was feasible and accurate in the nondestructive classification of oranges based on the hyperspectral diffuse transmittance imaging. It will greatly help to develop low-cost and real-time multispectral imaging systems for the nondestructive detection of fruit quality in the industry.


2019 ◽  
Vol 10 (1) ◽  
pp. 97-105
Author(s):  
Faegheh Golabi ◽  
Mousa Shamsi ◽  
Mohammad Hosein Sedaaghi ◽  
Abolfazl Barzegar ◽  
Mohammad Saeid Hejazi

Purpose: Riboswitches are special non-coding sequences usually located in mRNAs’ un-translated regions and regulate gene expression and consequently cellular function. Furthermore, their interaction with antibiotics has been recently implicated. This raises more interest in development of bioinformatics tools for riboswitch studies. Herein, we describe the development and employment of novel block location-based feature extraction (BLBFE) method for classification of riboswitches. Methods: We have already developed and reported a sequential block finding (SBF) algorithm which, without operating alignment methods, identifies family specific sequential blocks for riboswitch families. Herein, we employed this algorithm for 7 riboswitch families including lysine, cobalamin, glycine, SAM-alpha, SAM-IV, cyclic-di-GMP-I and SAH. Then the study was extended toward implementation of BLBFE method for feature extraction. The outcome features were applied in various classifiers including linear discriminant analysis (LDA), probabilistic neural network (PNN), decision tree and k-nearest neighbors (KNN) classifiers for classification of the riboswitch families. The performance of the classifiers was investigated according to performance measures such as correct classification rate (CCR), accuracy, sensitivity, specificity and f-score. Results: As a result, average CCR for classification of riboswitches was 87.87%. Furthermore, application of BLBFE method in 4 classifiers displayed average accuracies of 93.98% to 96.1%, average sensitivities of 76.76% to 83.61%, average specificities of 96.53% to 97.69% and average f-scores of 74.9% to 81.91%. Conclusion: Our results approved that the proposed method of feature extraction; i.e. BLBFE method; can be successfully used for classification and discrimination of the riboswitch families with high CCR, accuracy, sensitivity, specificity and f-score values.


Sign in / Sign up

Export Citation Format

Share Document