scholarly journals Comparison of In Vivo and In Vitro Digestibility in Donkeys

Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2100
Author(s):  
Sonia Tassone ◽  
Riccardo Fortina ◽  
Emanuela Valle ◽  
Laura Cavallarin ◽  
Federica Raspa ◽  
...  

We compared in vivo and in vitro dry matter (DM) and neutral detergent fiber (NDF) digestibility in donkeys using feces as microbial inoculum. Four donkeys were used in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. The animals were fed two types of hay, with or without flaked barley. For the in vivo procedure, total feces were collected for 6 days from each donkey; digestibility was calculated as the difference between ingested and excreted DM and NDF. For the in vitro procedure, donkey feces were buffered and used as microbial inoculum in an Ankom DaisyII Incubator; digestibility was estimated after 60 h of incubation. In vivo results showed that the addition of barley to hays did not change the digestibility values. In vivo estimates were higher than in vitro ones. The equations used to predict in vivo estimates from in vitro data were not reliable (R2 = 0.47 and 0.21; P = 0.003 and 0.078 for NDF and DM digestibility, respectively). Further studies need to evaluate different sample size and digestion times.

2018 ◽  
Vol 19 (0) ◽  
Author(s):  
Danilo Bonilla-Trujillo ◽  
Jairo Andrés Pardo-Guzman ◽  
Román David Castañeda-Serrano

Abstract In recent years sheep, farming has emerged as an alternative production system especially in dry areas. The use of leaves and fruit from some trees has become an alternative for feeding for ruminants; however, studies on these species are scarce. The objective of this study was to evaluate the effect of S. spectabilis fruit meal on in vivo and in vitro digestibility, blood metabolites, and ruminal kinetics in hair lambs. This study was carried out at Las Brisas farm, University of Tolima - Colombia. Twelve male hair lambs with body weight of 20.3 ± 2.5 kg were used. Animals were distributed in an experimental 4x4 Latin square design. The treatments consisted of diets based on Dichanthium spp hay with different inclusion levels of S. spectabilis fruit meal (15, 30, and 45%). A linear increasing effect (P <0.05) was observed for in vivo and in vitro digestibility of dry matter, organic matter, and crude protein; likewise, plasma urea and ruminal degradability increased as the level of supplementation of S. spectabilis increased. The meal of S. spectabilis improves digestibility, protein intake, and ruminal kinetics in hair lambs; therefore, it is suggested as a promising alternative for ruminants feeding in dry tropic regions.


1993 ◽  
Vol 21 (2) ◽  
pp. 173-180
Author(s):  
Gunnar Johanson

This presentation addresses some aspects of the methodology, advantages and problems associated with toxicokinetic modelling based on in vitro data. By using toxicokinetic models, particularly physiologically-based ones, it is possible, in principle, to describe whole body toxicokinetics, target doses and toxic effects from in vitro data. Modelling can be divided into three major steps: 1) to relate external exposure (applied dose) of xenobiotic to target dose; 2) to establish the relationship between target dose and effect (in vitro data, e.g. metabolism in microsomes, partitioning in tissue homogenates, and toxicity in cell cultures, are useful in both steps); and 3) to relate external exposure to toxic effect by combining the first two steps. Extrapolations from in vitro to in vivo, between animal and man, and between high and low doses, can easily be carried out by toxicokinetic simulations. In addition, several factors that may affect the toxic response by changing the target dose, such as route of exposure and physical activity, can be studied. New insights concerning the processes involved in toxicity often emerge during the design, refinement and validation of the model. The modelling approach is illustrated by two examples: 1) the carcinogenicity of 1,3-butadiene; and 2) the haematotoxicity of 2-butoxyethanol. Toxicokinetic modelling is an important tool in toxicological risk assessment based on in vitro data. Many factors, some of which can, and should be, studied in vitro, are involved in the expression of toxicity. Successful modelling depends on the identification and quantification of these factors.


2020 ◽  
Vol 98 (Supplement_2) ◽  
pp. 55-56
Author(s):  
Noheli Gutierrez ◽  
Jamie A Boyd

Abstract A study was conducted to evaluate effects of increasing concentration of food grade glycerol on rumen environment and nutrient digestibility. Three ruminally cannulated Jersey steers were used in this study. The study was conducted from March to May 2019. Experimental design was a 3x3 Latin square with a 2wk adjustment period followed by a 1wk collection period. Diet was coastal bermudagrass hay based. Different forage types were introduced in the incubation process to evaluate digestibility. Glycerol was administered once a day at 0, 15, or 20% of DMI (dry matter intake). dNDF (digestible NDF) and dDM (digestible dry matter) was determined using an ANKOM Daisy II incubator inoculated with 200g fresh rumen fluid and incubated for 12, 24, 48 and 72 h at 39°C. Each vessel contained ground forage samples in filter bags in triplicate. After incubation, filter bags were rinsed with cold water and dried for 24h in a 55°C forced air oven. Data were analyzed using the Proc MIXED procedure of SAS version 9.4. There was no difference dNDF in effect of different levels of glycerol between forage types by diet. But a numerical tendency was observed that dNDF was decreased at 20% inclusion rates in comparison to 0 and 15% inclusion of glycerol in the diet. Neither steer nor run was significantly different in the study. However as expected digestibility over time was significantly different (P &lt; 0.001). A significant increase was observed in DMI with the increased levels of glycerol in the diet (P = 0.003), both the 15% and 20% levels of glycerol increased in DMI in comparison to the control (0%). It appears based on these study results that digestibility may be inhibited, as levels of dietary glycerol increase in the diet and more work needs to be done to find the optimal level of glycerol supplementation.


1970 ◽  
Vol 131 (6) ◽  
pp. 1261-1270 ◽  
Author(s):  
George C. Saunders ◽  
Douglas Swartzendruber

Cells capable of reacting with sheep erythrocyte (SRBC) antigen to maturate and produce hemolysin appear simultaneously in the bone marrow and spleen of 1-day old Swiss-Webster mice. However, hemolysin-producing cell clones (HPCC) do not result. Complete functional precursor units generally appear in the spleens of mice older than 3 days. In vivo and in vitro data correlate well in this regard. Complete precursor units are not seen in the bone marrow and only very rarely in the thymus. The efficiency of precursor units of neonatal mice when they become functional approximates that of the mature animal when based on the doubling time of plaque-forming cells (PFC). Possible explanations of the initial appearance of incomplete precursor units have been discussed.


2017 ◽  
Vol 38 (4) ◽  
pp. 2129
Author(s):  
Samantha Mariana Monteiro Sunahara ◽  
Marcela Abbado Neres ◽  
Jaqueline Rocha Wobeto Sarto ◽  
Caroline Daiane Nath ◽  
Kácia Carine Scheidt ◽  
...  

The goal of this study was to assess the dehydration curve and nutritional value of Tifton 85 bermudagrass at two cutting heights from ground level (4 and 8 cm) during 120 days of storage in a closed shed. The dehydration curve was determined using samples from the entire plant at eight different times. The experimental design consisted of randomized blocks with plots subdivided per times and five replicates. The second step consisted of assessing the nutritional value of the stored Tifton 85 bermudagrass in randomized blocks with plots subdivided per times and two treatments per plot: cutting height of four and eight centimeters from the ground, and five different times for the subplots, with five replicates. Dehydration of Tifton 85 bermudagrass at the two heights occurred in 48 hours, considered an ideal time for hay drying. The dry matter content responded quadratically to the time of storage of the two heights, only differing during baling and after 120 days of storage. Crude protein content had a quadratic behavior in the two cutting heights, with the smallest value after 30 days of storage (107.0 g kg-1) and the largest after 90 days (147.8 g kg-1) in the cutting height of eight centimeters. The ether extract exhibited a quadratic behavior in the two cutting heights, only differing after 90 days of storage. The neutral detergent fiber content had linear positive response according to the time of storage, with no difference between the cutting heights. For the neutral detergent fiber content in the two cutting heights, the quadratic regression model was the best fit to the data, differing between the heights after 30 and 60 days of storage. In vitro dry matter digestibility and in vitro cell wall digestibility values of the stored hay were lower than the values obtained at the time of cutting. Cutting performed at four centimeters from the ground was the most suitable for hay production due to higher dry matter production and nutritional value without difference between bailing treatments. Hay storage caused undesirable changes in the nutritional value, especially in fiber content and in vitro digestibility.


1972 ◽  
Vol 23 (1) ◽  
pp. 25 ◽  
Author(s):  
DC Brown ◽  
JC Radcliffe

Twenty experimental silages were made from seven pasture species at different stages of maturity. In vivo dry matter, organic matter, and energy ad libitum intakes and digestibilities of the silages were determined with standardized pairs of Merino wethers. The following chemical characteristics of the silages were measured: nitrogen, ammonia nitrogen, total titratable acids, acetic, propionic, butyric, and lactic acids, total volatiles lost during oven drying, lactic acid as a percentage of the total organic acids, pH, acid pepsin dry matter disappearance, dry matter content, and in vitro digestibility and rate of digestion. When all 20 silages were considered, energy intakes on a body weight basis were significantly related to silage pH (r = 0.55) and rate of in vitro digestion (r = 0.58). When the five legume silages were removed from the analysis and only the 15 grass-dominant silages were considered, dry matter intakes were significantly related to acetic (r = –0.57) and propionic acid (r = –0.55) concentrations. Multiple regression analyses did not significantly increase the accuracy of predicting intake. The results suggested that silage intake was negatively related to the degree of fermentation that occurred during the ensiling process.


2020 ◽  
Vol 158 (1-2) ◽  
pp. 150-158 ◽  
Author(s):  
B. C. Silva ◽  
M. V. C. Pacheco ◽  
L. A. Godoi ◽  
F. A. S. Silva ◽  
D. Zanetti ◽  
...  

AbstractAn experiment was conducted to evaluate: (1) the effects of ensiling maize or sorghum grains after reconstitution on readily soluble fraction (a), potentially degradable fraction in the rumen (b) and rate constant for degradation of b (c) of dry matter (DM), organic matter (OM) and starch (STA); and (2) an appropriate incubation time for in situ or in vitro procedures to estimate in vivo digestibility. Four rumen-cannulated Nellore bulls (body weight = 262 ± 19.6 kg) distributed in a 4 × 4 Latin square were used. Diets were based on dry ground maize (DGM); or dry ground sorghum (DGS); or reconstituted ground maize silage; or reconstituted ground sorghum silage. In vitro and in situ incubations of the individual grains and diets were simultaneously performed with in vivo digestibility. In general, reconstituted grains and diets based on reconstituted grains presented greater (P < 0.05) fraction a and lower (P < 0.05) fraction b of DM, OM and STA compared to dry grains and diets based on dry grain. However, the magnitude of response of the reconstitution and ensiling process on DM and OM degradability parameter was greater for maize than that for sorghum. Moreover, no differences (P > 0.05) were observed between DGM- and DGS-based diets for c estimates. The results suggest that the reconstitution process promotes grains protein matrix breakdown increasing STA availability. The incubation times required for in vivo digestibility estimations of DM, OM and STA are 24 h for in situ and 36 h for in vitro procedures.


2003 ◽  
Vol 59 (5-6) ◽  
pp. 429-442 ◽  
Author(s):  
Xue-Qing Li ◽  
Anders Bj�rkman ◽  
Tommy B. Andersson ◽  
Lars L. Gustafsson ◽  
Collen M. Masimirembwa

Sign in / Sign up

Export Citation Format

Share Document