scholarly journals The Effects of Red Light on Mammalian Sperm Rely upon the Color of the Straw and the Medium Used

Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 122
Author(s):  
Jaime Catalán ◽  
Iván Yánez-Ortiz ◽  
Sabrina Gacem ◽  
Marion Papas ◽  
Sergi Bonet ◽  
...  

Previous research has determined that irradiation of mammalian sperm with red light increases motility, mitochondrial activity, and fertilization capacity. In spite of this, no study has considered the potential influence of the color of the straw and the extender used. Therefore, this study tests the hypothesis that the response of mammalian sperm to red light is influenced by the color of the straw and the turbidity/composition of the extender. Using the horse as a model, 13 ejaculates from 13 stallions were split into two equal fractions, diluted with Kenney or Equiplus extender, and stored at 4 °C for 24 h. Thereafter, each diluted fraction was split into five equal aliquots and subsequently packed into 0.5-mL straws of red, blue, yellow, white, or transparent color. Straws were either nonirradiated (control) or irradiated with a light–dark–light pattern of 3–3–3 (i.e., light: 3 min, dark: 3 min; light: 3 min) prior to evaluating sperm motility, acrosome and plasma membrane integrity, mitochondrial membrane potential, and intracellular ROS and calcium levels. Our results showed that irradiation increased some motion variables, mitochondrial membrane potential, and intracellular ROS without affecting the integrities of the plasma membrane and acrosome. Remarkably, the extent of those changes varied with the color of the straw and the extender used; the effects of irradiation were more apparent when sperm were diluted with Equiplus extender and packed into red-colored straws or when samples were diluted with Kenney extender and packed into transparent straws. As the increase in sperm motility and intracellular ROS levels was parallel to that of mitochondrial activity, we suggest that the impact of red light on sperm function relies upon the specific rates of energy provided to the mitochondria, which, in turn, vary with the color of the straw and the turbidity/composition of the extender.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Miroslava Cedikova ◽  
Michaela Miklikova ◽  
Lenka Stachova ◽  
Martina Grundmanova ◽  
Zdenek Tuma ◽  
...  

Propolis is a natural product that honeybees collect from various plants. It is known for its beneficial pharmacological effects. The aim of our study was to evaluate the impact of propolis on human sperm motility, mitochondrial respiratory activity, and membrane potential. Semen samples from 10 normozoospermic donors were processed according to the World Health Organization criteria. Propolis effects on the sperm motility and mitochondrial activity parameters were tested in the fresh ejaculate and purified spermatozoa. Propolis preserved progressive motility of spermatozoa in the native semen samples. Oxygen consumption determined in purified permeabilized spermatozoa by high-resolution respirometry in the presence of adenosine diphosphate and substrates of complex I and complex II (stateOXPHOSI+II) was significantly increased in the propolis-treated samples. Propolis also increased uncoupled respiration in the presence of rotenone (stateETSII) and complex IV activity, but it did not influence state LEAK induced by oligomycin. Mitochondrial membrane potential was not affected by propolis. This study demonstrates that propolis maintains sperm motility in the native ejaculates and increases activities of mitochondrial respiratory complexes II and IV without affecting mitochondrial membrane potential. The data suggest that propolis improves the total mitochondrial respiratory efficiency in the human spermatozoa in vitro thereby having potential to improve sperm motility.


Author(s):  
Luukkonen Jukka ◽  
Höytö Anne ◽  
Sokka Miiko ◽  
Syväoja Juhani ◽  
Juutilainen Jukka ◽  
...  

AbstractIonizing radiation has been shown to cause induced genomic instability (IGI), which is defined as a persistently increased rate of genomic damage in the progeny of the exposed cells. In this study, IGI was investigated by exposing human SH-SY5Y neuroblastoma cells to hydroxyurea and zeocin, two chemicals mimicking different DNA-damaging effects of ionizing radiation. The aim was to explore whether IGI was associated with persistent mitochondrial dysfunction. Changes to mitochondrial function were assessed by analyzing mitochondrial superoxide production, mitochondrial membrane potential, and mitochondrial activity. The formation of micronuclei was used to determine immediate genetic damage and IGI. Measurements were performed either immediately, 8 days, or 15 days following exposure. Both hydroxyurea and zeocin increased mitochondrial superoxide production and affected mitochondrial activity immediately after exposure, and mitochondrial membrane potential was affected by zeocin, but no persistent changes in mitochondrial function were observed. IGI became manifested 15 days after exposure in hydroxyurea-exposed cells. In conclusion, immediate responses in mitochondrial function did not cause persistent dysfunction of mitochondria, and this dysfunction was not required for IGI in human neuroblastoma cells.


2019 ◽  
Vol 25 (11) ◽  
pp. 695-705 ◽  
Author(s):  
Usama AL-Zubaidi ◽  
Jun Liu ◽  
Ozgur Cinar ◽  
Rebecca L Robker ◽  
Deepak Adhikari ◽  
...  

Abstract Mitochondria are highly dynamic organelles and their distribution, structure and activity affect a wide range of cellular functions. Mitochondrial membrane potential (∆Ψm) is an indicator of mitochondrial activity and plays a major role in ATP production, redox balance, signaling and metabolism. Despite the absolute reliance of oocyte and early embryo development on mitochondrial function, there is little known about the spatial and temporal aspects of ΔΨm during oocyte maturation. The one exception is that previous findings using a ΔΨm indicator, JC-1, report that mitochondria in the cortex show a preferentially increased ΔΨm, relative to the rest of the cytoplasm. Using live-cell imaging and a new ratiometric approach for measuring ΔΨm in mouse oocytes, we find that ΔΨm increases through the time course of oocyte maturation and that mitochondria in the vicinity of the first meiotic spindle show an increase in ΔΨm, compared to other regions of the cytoplasm. We find no evidence for an elevated ΔΨm in the oocyte cortex. These findings suggest that mitochondrial activity is adaptive and responsive to the events of oocyte maturation at both a global and local level. In conclusion, we have provided a new approach to reliably measure ΔΨm that has shed new light onto the spatio-temporal regulation of mitochondrial function in oocytes and early embryos.


2020 ◽  
Vol 32 (6) ◽  
pp. 619
Author(s):  
Marion Papas ◽  
Jaime Catalan ◽  
Sebastián Bonilla-Correal ◽  
Sabrina Gacem ◽  
Jordi Miró ◽  
...  

The aim of this study was to evaluate the response of donkey spermatozoa to oxidative stress induced by hydrogen peroxide, and to determine whether the presence of seminal plasma modulates the sperm response to that stress. Nine ejaculates were collected, extended in skim milk extender and split into two aliquots. Seminal plasma was removed from the first but not second aliquot. Samples were subsequently split into four aliquots supplemented with different concentrations of commercial hydrogen peroxide (0, 100 and 250µM and 50mM). Aliquots were incubated at 37°C under aerobic conditions and several sperm parameters, namely motility, viability, intracellular levels of peroxides and superoxides and mitochondrial membrane potential, were evaluated at 0, 1 and 3h. Exposure to hydrogen peroxide markedly decreased sperm motility but had much less of an effect on sperm viability, mitochondrial membrane potential and intracellular reactive oxygen species levels. A protective effect of seminal plasma against the loss of sperm motility was not apparent, but some kinetic parameters and relative levels of superoxides were better maintained when seminal plasma was present together with high concentration of hydrogen peroxide. In conclusion, oxidative stress induced by hydrogen peroxide reduces donkey sperm motility and has a less apparent effect on other sperm parameters. Finally, seminal plasma is only able to partially ameliorate the detrimental effect of this induced stress.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Mei-Hua Jin ◽  
Jia-Bin Yu ◽  
Hu-Nan Sun ◽  
Ying-Hua Jin ◽  
Gui-Nan Shen ◽  
...  

Excessive alcohol intake can significantly reduce cognitive function and cause irreversible learning and memory disorders. The brain is particularly vulnerable to alcohol-induced ROS damage; the hippocampus is one of the most sensitive areas of the brain for alcohol neurotoxicity. In the present study, we observed significant increasing of intracellular ROS accumulations in Peroxiredoxin II (Prx II) knockdown HT22 cells, which were induced by alcohol treatments. We also found that the level of ROS in mitochondrial was also increased, resulting in a decrease in the mitochondrial membrane potential. The phosphorylation of GSK3β (Ser9) and anti-apoptotic protein Bcl2 expression levels were significantly downregulated in Prx II knockdown HT22 cells, which suggests that Prx II knockdown HT22 cells were more susceptible to alcohol-induced apoptosis. Scavenging the alcohol-induced ROS with NAC significantly decreased the intracellular ROS levels, as well as the phosphorylation level of GSK3β in Prx II knockdown HT22 cells. Moreover, NAC treatment also dramatically restored the mitochondrial membrane potential and the cellular apoptosis in Prx II knockdown HT22 cells. Our findings suggest that Prx II plays a crucial role in alcohol-induced neuronal cell apoptosis by regulating the cellular ROS levels, especially through regulating the ROS-dependent mitochondrial membrane potential. Consequently, Prx II may be a therapeutic target molecule for alcohol-induced neuronal cell death, which is closely related to ROS-dependent mitochondria dysfunction.


1980 ◽  
Vol 186 (1) ◽  
pp. 21-33 ◽  
Author(s):  
I D Scott ◽  
D G Nicholls

A method is described, based on the differential accumulation of Rb+ and methyltriphenylphosphonium, for the simultaneous estimation of the membrane potentials across the plasma membrane of isolated nerve endings (synaptosomes), and across the inner membrane of mitochondria within the synaptosomal cytoplasm. These determinations, together with measurements of respiratory rates, and ATP and phosphocreatine concentrations, are used to define the bioenergetic behaviour of isolated synaptosomes under a variety of conditions. Under control conditions, in the presence of glucose, the plasma and mitochondrial membrane potentials are respectively 45 and 148mV. Addition of a proton translocator induces a 5-fold increase in respiration, and abolishes the mitochondrial membrane potential. The addition of rotenone to inhibit respiration does not affect the plasma membrane potential, and only lowers the mitochondrial membrane potential to 128mV. Evidence is presented that ATP synthesis by anaerobic glycolysis is sufficient under these conditions to maintain ATP-dependent processes, including the reversal of the mitochondrial ATP synthetase. Addition of oligomycin under non-respiring conditions leads to a complete collapse of the mitochondrial potential. Even under control conditions the plasma membrane (Na+ + K+)-dependent ATPase is responsible for a significant proportion of the synaptosomal ATP turnover. Veratridine greatly increases respiration, and depolarizes the plasma membrane, but only slightly lowers the mitochondrial membrane potential. High K+ and ouabain also lower the plasma membrane potential without decreasing the mitochondrial membrane potential. In non-respiring synaptosomes, anaerobic glycolysis is incapable of maintaining cytosolic ATP during the increased turnover induced by veratridine, and the mitochondrial membrane potential collapses. It is concluded that the internal mitochondria must be considered in any study of synaptosomal transport.


Sign in / Sign up

Export Citation Format

Share Document