scholarly journals Expression of Enzymes Associated with Prostaglandin Synthesis in Equine Conceptuses

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1180
Author(s):  
Sven Budik ◽  
Ingrid Walter ◽  
Marie-Christine Leitner ◽  
Reinhard Ertl ◽  
Christine Aurich

In the horse, mobility of the conceptus is required for maternal recognition of pregnancy depending on secretion of prostaglandins by the conceptus. The aim of this study was to determine the expression and localization of key enzymes of the different pathways leading to synthesis of prostaglandin E2 and F2α in the equine conceptus during the mobility phase. Enzyme expression was analyzed via quantitative RT-PCR in total RNA samples of equine conceptuses collected on days 10 (n = 5), 12 (n = 12), 14 (n = 5) and 16 (n = 7) from healthy mares. Relative abundance of cyclooxygenase (COX)-2 mRNA was higher (p < 0.05) than of COX-1 irrespective of conceptus age and for phospholipase A2 on day 16 in comparison to all other days (p < 0.01). Abundance of mRNA of cytosolic and microsomal prostaglandin E synthase (PGES) and of carbonyl reductase (CBR) 1 was not influenced by conceptus age. Immunohistochemically, COX-1, COX-2, as well as cytosolic and microsomal PGES were present in both the ectodermal and endodermal layer of the yolk sac wall. CBR-1 was restricted to periembryonic disc area. The localisation of the key enzymes explains the mechanism of embryo mobility. In vitro incubation of primary trophoblast cell cultures with oxytocin had no effect on key enzyme synthesis.

Zygote ◽  
2011 ◽  
Vol 19 (3) ◽  
pp. 277-283 ◽  
Author(s):  
Marie Saint-Dizier ◽  
Bénédicte Grimard ◽  
Catherine Guyader-Joly ◽  
Patrice Humblot ◽  
Andrew A. Ponter

SummaryProstaglandin E2 (PGE2) may play a major role in embryo development and the establishment of pregnancy in cattle. The biosynthesis of PGE2 implies the sequential transformation of arachidonic acid to PGH2 by cyclooxygenases (COXs), then the conversion of PGH2 to PGE2 by prostaglandin E synthases (PGESs). Quantitative RT-PCR was used to examine the expression of COX-1, COX-2, microsomal PGES-1 (mPGES-1), microsomal PGES-2 (mPGES-2) and cytosolic PGES (cPGES) mRNAs in day 7 in vitro-produced (IVP) embryos from oocytes collected by ovum pick-up in Holstein heifers. Transcripts for COX-2 and mPGES-1 were detected in all embryos, whereas transcripts for COX-1 and mPGES-2 were not detected and cPGESs were at the limit of detection in 40% of embryos. Levels of COX-2 and mPGES-1 mRNAs were significantly higher in blastocysts and expanded blastocysts than in morulae and early blastocysts. Furthermore, excellent-quality embryos (grade 1) displayed higher levels of both COX-2 and mPGES-1 than did embryos of good and medium qualities (grades 2–3). Our results suggest that bovine IVP embryos at the morula and blastocyst stages use exclusively the COX-2/mPGES-1 pathway for PGE2 biosynthesis, and that PGE2 is potentially involved in blastocyst expansion and developmental competence.


2007 ◽  
Vol 23 (4) ◽  
pp. E8 ◽  
Author(s):  
Christina Pfister ◽  
Rainer Ritz ◽  
Heike Pfrommer ◽  
Antje Bornemann ◽  
Marcos S. Tatagiba ◽  
...  

Object The current treatment for recurrent or malignant meningiomas with adjuvant therapies has not been satisfactory, and there is an intense interest in evaluating new molecular markers to act as therapeutic targets. Enzymes of the arachidonic acid (AA) cascade such as cyclooxygenase (COX)–2 or 5-lipoxygenase (5-LO) are upregulated in a number of epithelial tumors, but to date there are hardly any data about the expression of these markers in meningiomas. To find possible targets for chemotherapeutic intervention, the authors evaluated the expression of AA derivatives at different molecular levels in meningiomas. Methods One hundred and twenty-four meningioma surgical specimens and normal human cortical tissue samples were immunohistochemically and cytochemically stained for COX-2, COX-1, 5-LO, and prostaglandin E receptor 4 (PTGER4). In addition, Western blot and polymerase chain reaction (PCR) analyses were performed to detect the presence of eicosanoids in vivo and in vitro. Results Sixty (63%) of 95 benign meningiomas, 21 (88%) of 24 atypical meningiomas, all five malignant meningiomas, and all normal human cortex samples displayed high COX-2 immunoreactivity. All cultured specimens and IOMM-Lee cells stained positive for COX-2, COX-1, 5-LO, and PTGER4. The PCR analysis demonstrated no changes in eicosanoid expression among meningiomas of different World Health Organization grades and in normal human cortical and dura mater tissue. Conclusions Eicosanoid derivatives COX-1, COX-2, 5-LO, and PTGER4 enzymes show a high universal expression in meningiomas but are not upregulated in normal human cortex and dura tissue. This finding of the ubiquitous presence of these enzymes in meningiomas offers an excellent baseline for testing upcoming chemotherapeutic treatments.


2006 ◽  
Vol 290 (4) ◽  
pp. F897-F904 ◽  
Author(s):  
Lori Warford-Woolgar ◽  
Claudia Yu-Chen Peng ◽  
Jamie Shuhyta ◽  
Andrew Wakefield ◽  
Deepa Sankaran ◽  
...  

Renal prostanoids are important regulators of normal renal function and maintenance of renal homeostasis. In diseased kidneys, renal cylooxygenase (COX) expression and prostanoid formation are altered. With the use of the Han:Sprague-Dawley- cy rat, the aim of this study was to determine the relative contribution of renal COX isoforms (protein, gene expression, and activity) on renal prostanoid production [thromboxane B2 (TXB2, stable metabolite of TXA2), prostaglandin E2 (PGE2), and 6-keto-prostaglandin F1α (6-keto-PGF1α, stable metabolite of PGI2)] in normal and diseased kidneys. In diseased kidneys, COX-1-immunoreactive protein and mRNA levels were higher and COX-2 levels were lower compared with normal kidneys. In contrast, COX activities were higher in diseased compared with normal kidneys for both COX-1 [0.05 ± 0.02 vs. 0.45 ± 0.11 ng prostanoids·min−1·mg protein−1 ( P < 0.001)] and COX-2 [0.64 ± 0.10 vs. 2.32 ± 0.22 ng prostanoids·min−1·mg protein−1 ( P < 0.001)]. As the relative difference in activity was greater for COX-1, the ratio of COX-1/COX-2 was higher in diseased compared with normal kidneys, although the predominant activity was still due to the COX-2 isoform in both genotypes. Endogenous and steady-state in vitro levels of prostanoids were ∼2–10 times higher in diseased compared with normal kidneys. The differences between normal and diseased kidney prostanoids were in the order of TXB2 > 6-keto-PGF1α > PGE2, as determined by higher renal prostanoid levels and COX activity ratios of TXB2/6-keto-PGF1α, TXB2/PGE2, and 6-keto-PGF1α/PGE2. This specificity in both the COX isoform type and for the prostanoids produced has implications for normal and diseased kidneys in treatments involving selective inhibition of COX isoforms.


2012 ◽  
Vol 81 (1) ◽  
pp. 373-380
Author(s):  
Mari Kogiso ◽  
Tsutomu Shinohara ◽  
C. Kathleen Dorey ◽  
Yoshimi Shibata

Intranasal vaccination stimulates formation of cyclooxygenases (COX) and release of prostaglandin E2(PGE2) by lung cells, including alveolar macrophages. PGE2plays complex pro- or anti-inflammatory roles in facilitating mucosal immune responses, but the relative contributions of COX-1 and COX-2 remain unclear. Previously, we found thatMycobacterium bovisBCG, a human tuberculosis vaccine, stimulated increased release of PGE2by macrophages activatedin vitro; in contrast, intranasal BCG activated no PGE2release in the lungs, because COX-1 and COX-2 in alveolar macrophages were subcellularly dissociated from the nuclear envelope (NE) and catalytically inactive. This study tested the hypothesis that intranasal administration of BCG with cholera toxin (CT), a mucosal vaccine component, would shift the inactive, NE-dissociated COX-1/COX-2 to active, NE-associated forms. The results showed increased PGE2release in the lungs and NE-associated COX-2 in the majority of COX-2+macrophages. These COX-2+macrophages were the primary source of PGE2release in the lungs, since there was only slight enhancement of NE-associated COX-1 and there was no change in COX-1/COX-2 levels in alveolar epithelial cells following treatment with CT and/or BCG. To further understand the effect of CT, we investigated the timing of BCG versus CT administration forin vivoandin vitromacrophage activations. When CT followed BCG treatment, macrophagesin vitrohad elevated COX-2-mediated PGE2release, but macrophagesin vivoexhibited less activation of NE-associated COX-2. Our results indicate that inclusion of CT in the intranasal BCG vaccination enhances COX-2-mediated PGE2release by alveolar macrophages and further suggest that the effect of CTin vivois mediated by other lung cells.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Megumi Kobayashi ◽  
Kenta Watanabe ◽  
Satoshi Yokoyama ◽  
Chiho Matsumoto ◽  
Michiko Hirata ◽  
...  

Capsaicin, a transient receptor potential vanilloid type 1 (TRPV1) ligand, regulates nerve-related pain-sensitive signals, inflammation, and cancer growth. Capsaicin suppresses interleukin-1-induced osteoclast differentiation, but its roles in bone tissues and bone diseases are not known. This study examined the effects of capsaicin on inflammatory bone resorption and prostaglandin E (PGE) production induced by lipopolysaccharide (LPS) in vitro and on bone mass in LPS-treated mice in vivo. Capsaicin suppressed osteoclast formation, bone resorption, and PGE production induced by LPS in vitro. Capsaicin suppressed the expression of cyclooxygenase-2 (COX-2) and membrane-bound PGE synthase-1 (mPGES-1) mRNAs and PGE production induced by LPS in osteoblasts. Capsaicin may suppress PGE production by inhibiting the expression of COX-2 and mPGES-1 in osteoblasts and LPS-induced bone resorption by TRPV1 signals because osteoblasts express TRPV1. LPS treatment markedly induced bone loss in the femur in mice, and capsaicin significantly restored the inflammatory bone loss induced by LPS in mice. TRPV1 ligands like capsaicin may therefore be potentially useful as clinical drugs targeting bone diseases associated with inflammatory bone resorption.


1999 ◽  
Vol 276 (3) ◽  
pp. R913-R921 ◽  
Author(s):  
Ronald I. Clyman ◽  
Pierre Hardy ◽  
Nahid Waleh ◽  
Yao Qi Chen ◽  
Françoise Mauray ◽  
...  

Nonselective cyclooxygenase (COX) inhibitors are potent tocolytic agents but have adverse effects on the fetal ductus arteriosus. We hypothesized that COX-2 inhibitors may not affect the ductus if the predominant COX isoform is COX-1. To examine this hypothesis, we used ductus arteriosus obtained from late-gestation fetal lambs. In contrast to our hypothesis, fetal lamb ductus arteriosus expressed both COX-1- and COX-2-immunoreactive protein (by Western analysis). Although COX-1 was found in both endothelial and smooth muscle cells, COX-2 was found only in the endothelial cells lining the ductus lumen (by immunohistochemistry). The relative contribution of COX-1 and COX-2 to PGE2 synthesis was consistent with the immunohistochemical results: in the intact ductus, PGE2 formation was catalyzed by both COX-1 and COX-2 in equivalent proportions; in the endothelium-denuded ductus, COX-2 no longer played a significant role in PGE2 synthesis. NS-398, a selective inhibitor of COX-2, was 66% as effective as the selective COX-1 inhibitor valeryl salicylate and the nonselective COX inhibitor indomethacin in causing contraction of the ductus in vitro. At this time, caution should be used when recommending COX-2 inhibitors for use in pregnant women.


2016 ◽  
Vol 3 ◽  
pp. 331-334
Author(s):  
Nisa Naspiah ◽  
Yoppi Iskandar ◽  
Moelyono M W Moelyono M W ◽  
Febrina Mahmudah ◽  
Lia Puspitasari
Keyword(s):  
Cox 2 ◽  

Penelitian mengenai aktivitas antiinflamasi keladi belau (Caladium bicolor (W. Ait) Vent.) terhadap enzim siklooksigenase (COX) secara in vitro telah dilakukan. Aktivitas antiinflamasi secara in vitro terhadap enzim COX ditentukan dengan menggunakan metode TMPD (N,N,N’,N’-tetrametil-p-fenilendiamin) secara spektrofotometri. Enzim COX yang diuji meliputi enzim COX-1 dan COX-2. Berdasarkan hasil pengujian diketahui ekstrak batang keladi belau mempunyai aktivitas antiinflamasi dengan nilai IC50 sebesar 250,66 ppm terhadap COX-1 dan 255,27 ppm terhadap COX-2. Hasil pengujian menunjukkan bahwa ekstrak tersebut lebih banyak menghambat enzim COX-1.


2003 ◽  
Vol 110 (5-6) ◽  
pp. 299-303 ◽  
Author(s):  
Esko Kankuri ◽  
Erkka Solatunturi ◽  
Heikki Vapaatalo
Keyword(s):  
Cox 2 ◽  

Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 554 ◽  
Author(s):  
Harshal Nemade ◽  
Aviseka Acharya ◽  
Umesh Chaudhari ◽  
Erastus Nembo ◽  
Filomain Nguemo ◽  
...  

Application of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is limited by the challenges in their efficient differentiation. Recently, the Wingless (Wnt) signaling pathway has emerged as the key regulator of cardiomyogenesis. In this study, we evaluated the effects of cyclooxygenase inhibitors on cardiac differentiation of hPSCs. Cardiac differentiation was performed by adherent monolayer based method using 4 hPSC lines (HES3, H9, IMR90, and ES4SKIN). The efficiency of cardiac differentiation was evaluated by flow cytometry and RT-qPCR. Generated hPSC-CMs were characterised using immunocytochemistry, electrophysiology, electron microscopy, and calcium transient measurements. Our data show that the COX inhibitors Sulindac and Diclofenac in combination with CHIR99021 (GSK-3 inhibitor) efficiently induce cardiac differentiation of hPSCs. In addition, inhibition of COX using siRNAs targeted towards COX-1 and/or COX-2 showed that inhibition of COX-2 alone or COX-1 and COX-2 in combination induce cardiomyogenesis in hPSCs within 12 days. Using IMR90-Wnt reporter line, we showed that inhibition of COX-2 led to downregulation of Wnt signalling activity in hPSCs. In conclusion, this study demonstrates that COX inhibition efficiently induced cardiogenesis via modulation of COX and Wnt pathway and the generated cardiomyocytes express cardiac-specific structural markers as well as exhibit typical calcium transients and action potentials. These cardiomyocytes also responded to cardiotoxicants and can be relevant as an in vitro cardiotoxicity screening model.


Zygote ◽  
2005 ◽  
Vol 13 (2) ◽  
pp. 103-108 ◽  
Author(s):  
Hui-Ning Tan ◽  
Ying Liu ◽  
Hong-Lu Diao ◽  
Zeng-Ming Yang

Prostaglandin E2 (PGE2) is shown to be essential for female reproduction. Cyclooxygenase (COX) is a rate-limiting enzyme in prostaglandin synthesis from arachidonic acid and exists in two isoforms: COX-1 and COX-2. Prostaglandin E synthase (PGES) is a terminal prostanoid synthase and can catalyse the isomerization of the COX product PGH2 to PGE2, including microsomal PGES-1 (mPGES-1), cytosolic PGES (cPGES) and mPGES-2. This study examined the protein expression of COX-1, COX-2, mPGES-1, cPGES and mPGES-2 in preimplantation mouse embryos by immunohistochemistry. Embryos at different stages collected from oviducts or uteri were transferred into a flushed oviduct of non-pregnant mice. The oviducts containing embryos were paraffin-embedded and processed for immunostaining. COX-1 immunostaining was at a basal level in zygotes and a low level at the 2-cell stage, reaching a high level from the 4-cell to blastocyst stage. COX-2 immunostaining was at a low level at the zygote stage and was maintained at a high level from the 2-cell to blastocyst stages. A low level of mPGES-1 immunostaining was observed from the zygote to 8-cell stages. The signal for mPGES-1 immunostaining became stronger at the morula stage and was strongly seen at the blastocyst stage. cPGES immunostaining was strongly observed in zygotes, 2-cell and 8-cell embryos. There was a slight decrease in cPGES immunostaining at the 4-cell, morula and blastocyst stages. mPGES-2 immunostaining was at a low level from the zygote to morula stages and at a high level at the blastocyst stage. We found that the COX-1, COX-2, mPGES-1, cPGES and mPGES-2 protein signals were all at a high level at the blastocyst stage. PGE2 produced during the preimplantation development may play roles during embryo transport and implantation.


Sign in / Sign up

Export Citation Format

Share Document