scholarly journals ISGylation Inhibits an LPS-Induced Inflammatory Response via the TLR4/NF-κB Signaling Pathway in Goat Endometrial Epithelial Cells

Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2593
Author(s):  
Jinbang Xiao ◽  
Shanshan Li ◽  
Ruixue Zhang ◽  
Zongjie Wang ◽  
Xinyan Zhang ◽  
...  

Endometritis is a common and important reproductive disease of domestic animals. The principal factors responsible for the disease are infection with Gram-negative bacteria, the release of Lipopolysaccharides (LPS) and activation of the TLR4/NF-κB signaling pathway. However, we do not fully understand the interaction between endometrial immunity and bacterial infection in the disease etiology. The ubiquitin-like protein ISG15 can regulate the TLR4/NF-κB signaling pathway via the ISGylation modification system, modulating the inflammatory response. In the present study, we found that ISG15 protein was expressed mainly in the cytoplasm of goat endometrial epithelial cells (gEECs) and that the expression of key genes and proteins of ISGylation increased in LPS-induced gEECs. Overexpression and silencing of the ISG15 gene demonstrated that ISGylation inhibited an LPS-induced inflammatory response via the TLR4/NF-κB signaling pathway in gEECs. Here, we provide the experimental basis for further exploration of the role of the ISGylation modification system in the inflammatory response of endometrium and a potential method for the treatment of endometritis.

2020 ◽  
Vol 1 (9) ◽  
pp. 64-71
Author(s):  
E. A. Klimov ◽  
◽  
E. K. Novitskaya ◽  
S. N. Koval’chuk ◽  
◽  
...  

Intercellular adhesion molecule CD209 (DC-SIGN) is a membrane C-type lectin receptor expressed on the surface of dendritic cells and macrophages. CD209 plays an important role in innate immunity. Many studies have shown the possibility of interaction of the CD209 molecule with a number of dangerous pathogens of humans and animals. This review summarizes information on the structure of the CD209 gene and its product, describes the role of the CD209 protein in the immune response, in the migration of dendritic cells from the blood to the tissue, and their interaction with neutrophils. The currently known signaling pathway of activation through the CD209 inflammatory response is presented. The role of CD209 as an endocytic antigen receptor and the participation of the protein in immune evasion of pathogens are discussed. The mechanisms known to date for the development of infections caused by pathogens of various nature in animals are described.


2020 ◽  
Author(s):  
Jie Yu ◽  
Wenwen Zhang ◽  
Jiayue Huang ◽  
Yating Gou ◽  
Congcong Sun ◽  
...  

Abstract Background: Human amniotic mesenchymal stem cells(hAMSCs) can repair and improve the damaged endometrium which its aplastic disorder is the main reason for intrauterine adhesions(IUAs).Methods: We conducted in vivo and in vitro experiments. In vivo experiments: 45 female Sprague-Dawley(SD) rats were involved and randomized equally into Sham group, IUA group, Estradiol(E2) group, hAMSCs group, and E2 + hAMSCs group. The effect of hAMSCs and E2 only or combined was evaluated by Hematoxylin-eosin(HE) and Masson staining. The expression of epithelial markers and key proteins of Notch signaling pathway by Immunohistochemistry. In vitro experiments: Firstly, the hAMSCs cells were taken and divided into control group and induced group in which hAMSCs were differentiated into endometrial epithelial cells in induced microenvironment, and extracted their RNA respectively. The expression of epithelial markers and Notch1 messenger RNA (mRNA) was detected by Real-time quantitative polymerase chain reaction(qRT-PCR). and the changes in expression position of Notch intracellular domain(NICD) and expression amount of target gene, hairy enhancer of split 1(Hes1) were detected by Immunofluorescence. Then, Activated and inhibited the Notch signaling pathway while induction, and detected mRNA expression of hAMSCs epithelial markers by quantitative real-time polymerase chainreaction (qRT-PCR) respectively and detected hAMSCs cell cycle by flow cytometric. Results:This study showed that hAMSCs alone or combined with E2 could promote endometrial repair, and Notch signaling pathway a great role in it. And otherwise, the activation or habitation of Notch signaling pathway determines whether hAMSCs could differentiate into endometrial epithelial cells or not.Conclusion: we concluded that activate the Notch signaling pathway promote the differentiation of hAMSCs into endometrial epithelial cells, and further treat IUAs.


2021 ◽  
Vol 8 ◽  
Author(s):  
Junrui Cheng ◽  
Emilio Balbuena ◽  
Baxter Miller ◽  
Abdulkerim Eroglu

Background: Carotenoids are naturally occurring pigments accounting for the brilliant colors of fruits and vegetables. They may display antioxidant and anti-inflammatory properties in humans besides being precursors to vitamin A. There is a gap of knowledge in examining their role within colonic epithelial cells. We proposed to address this research gap by examining the effects of a major dietary carotenoid, β-carotene, in the in vitro epithelial cell model.Methods: We examined the function of β-carotene in the lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signaling pathway. We conducted western blotting assays to evaluate expressions of TLR4 and its co-receptor, CD14. We also examined NF-κB p65 subunit protein levels in the model system. Furthermore, we studied the impact of β-carotene on the tight junction proteins, claudin-1, and occludin. We further carried out immunocytochemistry experiments to detect and visualize claudin-1 expression.Results: β-Carotene reduced LPS-induced intestinal inflammation in colonic epithelial cells. β-Carotene also promoted the levels of tight junction proteins, which might lead to enhanced barrier function.Conclusions: β-Carotene could play a role in modulating the LPS-induced TLR4 signaling pathway and in enhancing tight junction proteins. The findings will shed light on the role of β-carotene in colonic inflammation and also potentially in metabolic disorders since higher levels of LPS might induce features of metabolic diseases.


Sign in / Sign up

Export Citation Format

Share Document