bioactive substance
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 37)

H-INDEX

17
(FIVE YEARS 2)

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 215
Author(s):  
Zhihao Ju ◽  
Tingting Feng ◽  
Jia Feng ◽  
Junping Lv ◽  
Shulian Xie ◽  
...  

By separating and extracting algae from the collected water samples, an oil-producing diatom strain was obtained. Microscopic observation of the strain revealed that its morphological characteristics were highly similar to those of the genus Cyclotella. The cloning of 18S rDNA and phylogenetic analysis showed that the algae were clustered with Cyclotella menegheniana with a high support rate, indicating that the alga was C. menegheniana. The fatty acid content of the alga was determined and found to be mainly C14, C16, and C18 fatty acids, which were in accordance with the relevant standards for edible oil. In this study, different gradient levels of salinity and light were set to investigate the culture and bioactive substance production of C. menegheniana. The results showed that the best growth condition was achieved when the salinity was 15 g·L−1, and its biomass and oil content were the highest at 0.27 g·L−1 and 21%, respectively. The final biomass was the highest when the light intensity was 2000 Lux and the oil content was 18.7%. The results of the study provided a basis for the large-scale production of edible oils and biodiesel.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3293
Author(s):  
Monika Bogusławska-Tryk ◽  
Ewa Ziółkowska ◽  
Anna Sławińska ◽  
Maria Siwek ◽  
Joanna Bogucka

The aim of the study was to determine the effect of probiotics, prebiotics and synbiotics administered in ovo on selected morphological parameters of the small intestine (duodenum, jejunum, ileum) in broiler chickens (Ross 308) and native chickens (Green-legged Partridge, GP). On the 12th day of embryonic development (the incubation period), an aqueous solution of a suitable bioactive substance was supplied in ovo to the egg’s air cell: probiotic—Lactococcus lactis subsp. cremoris (PRO), prebiotic—GOS, galacto-oligosaccharides (PRE) or symbiotic—GOS + Lactococcus lactis subsp. cremoris (SYN). Sterile saline was injected into control (CON) eggs. After hatching, the chicks were placed in pens (8 birds/pen, 4 replicates/group) and housed for 42 days. On the last day of the experiment, all birds were individually weighed and slaughtered. Samples for histological analysis were taken directly after slaughter from three sections of the small intestine. In samples from the duodenum, jejunum and ileum, the height and width of the intestinal villi (VH) were measured and their area (VA) was calculated, the depth of the intestinal crypts (CD) was determined, the thickness of the muscularis was measured and the ratio of the villus height to the crypt depth (V/C) was calculated. On the basis of the obtained data, it can be concluded that the applied substances administered in ovo affect the production parameters and intestinal morphology in broiler chickens and GP. The experiment showed a beneficial effect of in ovo stimulation with a prebiotic on the final body weight of Ross 308 compared to CON, while the effect of the administered substances on the intestinal microstructure is not unequivocal. In GP, the best effect in terms of villi height and V/C ratio was found in the in ovo synbiotic group. Taking into account the obtained results, it can be concluded that chickens of different genotypes react differently to a given substance; therefore, the substances should be adapted to the genotype.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3808
Author(s):  
Yerkeblan Tazhbayev ◽  
Aldana Galiyeva ◽  
Tolkyn Zhumagaliyeva ◽  
Meiram Burkeyev ◽  
Bakhytgul Karimova

Tuberculosis is one of the dangerous infectious diseases, killing over a million people worldwide each year. The search for new dosage forms for the treatment of drug-resistant tuberculosis is an actual task. Biocompatible polymer nanoparticles, in particular bovine serum albumin (BSA), are promising drug carriers. Nanoparticle (NP) parameters such as diameter, polydispersity, bioactive substance loading, and NP yield are very important when it comes to drug transport through the bloodstream. The most well-known and widely used first-line anti-tuberculosis drug, isoniazid (INH), is being used as a drug. BSA-INH NPs were obtained by an ethanol desolvation of an aqueous protein solution in the drug presence. The peculiarity of the method is that natural components, namely urea and cysteine, are used for the stabilization of BSA-INH NPs after desolvation. The characteristics of the obtained BSA-INH NPs are significantly affected by the concentration of protein, isoniazid, urea, and cysteine in the solution. The aim of the present study is to investigate the concentration effect of the system reacting components on the parameters of the NPs that are obtained. We have chosen the concentrations of four reacting components, i.e., BSA, isoniazid, urea, and cysteine, as controlling factors and applied the Taguchi method to analyze which concentration of each component has an important effect on BSA-INH NPs characteristics.


2021 ◽  
Vol 8 (2) ◽  
pp. 127-134
Author(s):  
Trisna Priadi ◽  
Nurul Chotimah ◽  
Agus Ismanto

Pond apple (Annona glabra L.) belongs to the family of Annonaceae. The seed of A. glabra contains bioactive substance that is toxic to some organisms, however the effectiveness to control wood degrading termites has not yet been scientifically reported.  This research analyzes the efficacy of A. glabra seed extract to wood degrading termites. Seed extraction was conducted using n-hexane and ethyl acetate. The paper disc test showed that the extract of A. glabra is toxic to Cryptotermes cynocephalus (dry-wood termites) and Coptotermes curvignathus (subterranean termites). The higher extract concentration (up to 63%) resulted in a higher termite mortality (up to 100%) and lower weight loss of paper sample (less than 1%).  Ethyl acetate extract of A. glabra seeds has a better toxicity effect than n-hexane extract against dry wood termites and subterranean termites.


Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2944
Author(s):  
Karolina Stasiak ◽  
Anna Slawinska ◽  
Joanna Bogucka

The aim of the study was to analyse the effect of probiotics, prebiotics and synbiotics injected in ovo on day 12 of embryonic development on the microstructure of the superficial pectoral muscle (musculus pectoralis superficialis) from 42-day-old chickens of different genotypes: broilers (Ross 308) and general-purpose type (green-legged partridge (GP) chickens Zk-11, native chickens). Incubated eggs were divided into four groups (each genotype separately) depending on the substance injected in ovo: normal saline (C, control); Lactococcus lactis subsp. cremoris (PRO); galactooligosaccharides, GOS (PRE) or GOS + L. lactis (SYN). After hatching, chicks were placed in eight replicated pens (four pens/genotype group). There were eight birds per pen. In total, 64 birds were used in the experiment. Birds were slaughtered at the age of 42 days, and samples of superficial pectoral muscles were taken for analysis. The microstructure of the pectoral muscles was evaluated using the cryosectioning (frozen tissue sectioning) technique and staining with haematoxylin and eosin. Statistical analysis revealed that the in ovo injection of probiotics, prebiotics and synbiotics had no significant effect on the diameter of muscle fibres from chickens of the two genotypes. The number of fibres in the muscles from green-legged partridge chickens was about three-fold higher than the fibre density in the muscles from broiler chickens, with the fibre diameter being two-fold smaller. This fact may indicate a greater tenderness of meat from GP chickens compared to the meat from Ross 308 broilers. In the case of broilers, a prebiotic (GOS) was the most effective bioactive substance in reducing the number of histopathological changes. Considering muscles from GP chickens, the number of normal fibres was highest in birds treated with the probiotic. These findings indicate that the microstructural features of pectoral muscles depend not only on the type of the injected bioactive substance but also on the genotype of chickens.


Author(s):  
R. Chabi Doco ◽  
M. T. A. Kpota Houngue ◽  
Urbain A. Kuevi ◽  
Y. G. S. Atohoun

Several methods exist when seeking to experimentally evaluate the antioxidant properties of a natural bioactive substance. In the case of flavonoids, the methods used are mainly based on the experimental determination of the percentage of inhibition (IC50) or the redox potential (E). In the present work, a prediction study of the redox potential E and the inhibitory concentration LogIC50 was carried out, using the AM1 and HF/6-311G(d,p) method. At the end of this study, three (03) QSPR models were validated and retained, one (01) for the prediction of the redox potential and four (02) for the prediction of the inhibitory concentration : The Redox Prediction Model, developed at the AM1 approximation level, for which 96.43 of the experimental variance is explained by the descriptors : E= -0,29 + 0,22EHomo + 0,11ELumo - 0,05 The Inhibitory Concentration Prediction Models, developed at the AM1 level, for which 96.35⁒ of the experimental variance is explained by the descriptors : LogIC50 = -4,92 + 11,37EHomo + 34,36ELumo + 0,67 The Inhibitory Concentration Prediction Model, developed at the HF/6-311G level (d, p), for which 99.96⁒ of the experimental variance is explained by the descriptors. LogIC50 = 62,40 + 80,25 EHomo - 28,44Elumo + 52,01S - 71,26 η - 6,11μ The development of these QSPR models represents a significant advance in predicting the antioxidant properties of bioactive molecules such as flavonoids based on descriptors calculated by quantum chemical methods.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Kamal Essifi ◽  
Mohamed Brahmi ◽  
Doha Berraaouan ◽  
Abderrahim Ed-Daoui ◽  
Ali El Bachiri ◽  
...  

To understand the abilities of Ca-alginate microcapsules and their specific applications in different fields, it is necessary to determine the physicochemical and structural properties of those formulated microcapsules. In this work, we aimed to study the effect of alginate concentration in the improvement of the encapsulation efficiency (EE) and on the release of phenolic and flavonoid substances. The relationship between the structure of the encapsulated bioactive substance and Ca-alginate network and their effect on the EE and release kinetics have been investigated. The incorporation, structure, morphology, and phase properties of all elaborated materials were characterized by UV-spectroscopy, Fourier transform infrared (ATR-FTIR), scanning electron microscope (SEM), and X-ray diffraction (DRX). The results indicate that increasing the polymer concentration increases the EE and decreases the loading capacity (LC), whereas the effect of alginate polymer concentration on the release was not observed. The release study of bioactive substances showed that the release kinetics is relatively dependent on the structure and the physicochemical characteristics of the bioactive substance, which became clear when the encapsulated compounds were released from the core of calcium alginate microcapsules. Thus, it could be concluded that the pores size of the Ca-alginate network is smaller than the volume of the crocin molecule (2794.926 Å3) and higher than the volume of the gallic acid molecule (527.659 Å3). For the same microcapsules system, the release mechanism is affected by the structure and physicochemical properties of the encapsulated molecules.


2021 ◽  
Vol 43 (2) ◽  
pp. 687-703
Author(s):  
Yawei Hu ◽  
Guangbo Kang ◽  
Lina Wang ◽  
Mengxue Gao ◽  
Ping Wang ◽  
...  

Cellulases have been used to extract bioactive ingredients from medical plants; however, the poor enzymatic properties of current cellulases significantly limit their application. Two strategies are expected to address this concern: (1) new cellulase gene mining strategies have been promoted, optimized, and integrated, thanks to the improvement of gene sequencing, genomic data, and algorithm optimization, and (2) known cellulases are being modified, thanks to the development of protein engineering, crystal structure data, and computing power. Here, we focus on mining strategies and provide a systemic overview of two approaches based on sequencing and function. Strategies based on protein structure modification, such as introducing disulfide bonds, proline, salt bridges, N-glycosylation modification, and truncation of loop structures, have already been summarized. This review discusses four aspects of cellulase-assisted extraction. Initially, cellulase alone was used to extract bioactive substances, and later, mixed enzyme systems were developed. Physical methods such as ultrasound, microwave, and high hydrostatic pressure have assisted in improving extraction efficiency. Cellulase changes the structure of biomolecules during the extraction process to convert them into effective ingredients with better activity and bioavailability. The combination of cellulase with other enzymes and physical technologies is a promising strategy for future extraction applications.


2021 ◽  
Vol 10 (3) ◽  
pp. 101-108
Author(s):  
Mirosława Grymel ◽  

Acmella oleracea is an interesting plant with a high spilanthol content, which due to its specific activity is considered as a valuable bioactive substance. Spilanthol displays a broad spectrum of biological activity, including analgesic, anti-inflammatory, antifungal, antioxidant, anti-cancer and bacteriostatic effects. In addition, it inhibits contractions of the facial muscles, and thanks to it was called a natural herbal botox. The interest in spilanthol by the cosmetics industry, leads that effective methods of its isolation from plant material are still being sought. The aim of the study was to present the possibility of using spilanthol in cosmetology and aesthetic dermatology. In this work, application studies presented, confirm the possibility of its use as a natural component of anti-wrinkle cosmetics.


Author(s):  
М.А. Березуцкий ◽  
Н.А. Дурнова ◽  
Л.Е. Сигарёва

В обзоре представлен анализ экспериментальных и отчасти клинических данных по исследованию нейробиологических эффектов тенуигенина - важнейшего биологически активного соединения истода тонколистного (Polygala tenuifolia Willd.). Подробно описывается нейропротекторное и нейротрофическое действие данного вещества. Отмечается, что способности тенуигенина уменьшать секрецию бета-амилоида и защищать нейроны от повреждения уже образовавшимся бета-амилоидом, ингибировать процессы гиперфосфорилирования таубелков и воспалительные реакции в микроглии, а также усиливать основную синаптическую передачу могу быть использованы при разработке эффективных терапевтических средств, направленных на ослабление патогенеза болезни Альцгеймера. Эффекты защиты дофаминергических нейронов и митохондриального мембранного потенциала, а также сниженияфосфорилирования α-синуклеина могут оказывать влияние на процессы, развивающиеся при болезни Паркинсона. Делается общий вывод, что тенуигенин заслуживает дальнейшего изучения и, возможно, сможет найти применение в качестве средства аугментации терапии болезней Альцгеймера и Паркинсона и других нейродегенеративных заболеваний. The analysis of experimental and partially clinical data about researches of neurobiological effects of tenuigenin - the most important bioactive substance of Polygala tenuifolia Willd. in this review was given. The neuroprotective and neurotrophic action of given substance were described in detail. It was noted, that the capacities of the tenuigenin to decrease the secretion of beta amyloid and to protect of neurons from damage by already made beta ameloids, to inhibit the processes of the tau proteins` hyperphosphorylation and inflammations in microglia, as well as increase the main synaptic transmission can be used by the development of effective therapeutic drugs aimed to reduce the pathogenesis of Alzheimer`s disease. The effects of dopaminergic neurons and mitochondrial membrane potential protection as well as reduction of α-synuclein phosphorylation can influence the processes by Parkinson`s disease. It was concluded, that the tenuigenin deserves further study and possibly will be used as augmentation of Alzheimer`s, Parkinson`s and other neurodegenerative diseases therapy.


Sign in / Sign up

Export Citation Format

Share Document