scholarly journals Association between Fatty Acid Composition, Cryotolerance and Fertility Competence of Progressively Motile Bovine Spermatozoa

Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2948
Author(s):  
Tanya Kogan ◽  
Dana Grossman Dahan ◽  
Ronit Laor ◽  
Nurit Argov-Argaman ◽  
Yoel Zeron ◽  
...  

An association between progressive motility (PM) and spermatozoa fertility competence has been suggested. However, the mechanism that underlies PM is not clear enough. We examined physiological characteristics and fatty acid composition of fresh spermatozoa with high and low PM. Additional analysis of fatty acid composition and structural characteristics was performed on spermatozoa samples with high and low progressively motile spermatozoa’s survival (PMSS), i.e., the ratio between the proportion of progressively motile spermatozoa after and before cryopreservation. Finally, a fertility field trial was conducted to examine the association between the number of PM spermatozoa within the insemination straw post thawing and conception rate. Analysis of fresh spermatozoa revealed a higher omega-6 to omega-3 ratio in ejaculates with low PM relative to those with high PM (p < 0.01). The proportion of polyunsaturated fatty acids was higher in low-PMSS fresh samples (p < 0.05) relative to their high-PMSS counterparts. Fresh samples with high-PMSS expressed a higher mitochondrial membrane potential (p < 0.05) and a higher proportion of viable cells that expressed reactive oxygen species (ROS; p < 0.05). Post-thawing evaluation revealed a reduced proportion of progressively motile sperm, with a prominent effect in samples with high PM relative to low PM, defined before freezing (p < 0.01). No differences in spermatozoa mitochondrial membrane potential or ROS level were found post-thawing. A fertility study revealed a positive correlation between the number of progressively motile spermatozoa within a standard insemination straw and conception rate (p < 0.05). Considering these, the bull PMSS is suggested to be taken into account at the time of straw preparation.

2016 ◽  
Vol 113 (39) ◽  
pp. 10920-10925 ◽  
Author(s):  
Cornelia W. Twining ◽  
J. Thomas Brenna ◽  
Peter Lawrence ◽  
J. Ryan Shipley ◽  
Troy N. Tollefson ◽  
...  

Once-abundant aerial insectivores, such as the Tree Swallow (Tachycineta bicolor), have declined steadily in the past several decades, making it imperative to understand all aspects of their ecology. Aerial insectivores forage on a mixture of aquatic and terrestrial insects that differ in fatty acid composition, specifically long-chain omega-3 polyunsaturated fatty acid (LCPUFA) content. Aquatic insects contain high levels of both LCPUFA and their precursor omega-3 PUFA, alpha-linolenic acid (ALA), whereas terrestrial insects contain much lower levels of both. We manipulated both the quantity and quality of food for Tree Swallow chicks in a full factorial design. Diets were either high-LCPUFA or low in LCPUFA but high in ALA, allowing us to separate the effects of direct LCPUFA in diet from the ability of Tree Swallows to convert their precursor, ALA, into LCPUFA. We found that fatty acid composition was more important for Tree Swallow chick performance than food quantity. On high-LCPUFA diets, chicks grew faster, were in better condition, and had greater immunocompetence and lower basal metabolic rates compared with chicks on both low LCPUFA diets. Increasing the quantity of high-LCPUFA diets resulted in improvements to all metrics of performance while increasing the quantity of low-LCPUFA diets only resulted in greater immunocompetence and lower metabolic rates. Chicks preferentially retained LCPUFA in brain and muscle when both food quantity and LCPUFA were limited. Our work suggests that fatty acid composition is an important dimension of aerial insectivore nutritional ecology and reinforces the importance of high-quality aquatic habitat for these declining birds.


2013 ◽  
Vol 26 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Mehdi Nikoo ◽  
Mohammad Reza Ghomi

OBJECTIVE: The objective of this study was to investigate the effect of frying oils (canola, hydrogenated sunflower and soybean oils) available commercially and chill storage on the proximate and fatty acid composition of fried slices of farmed great sturgeon (Huso huso). METHODS: Slices of farmed great sturgeon were fried for four minutes at 160ºC in a deep-fryer using different frying oils (canola, hydrogenated sunflower and soybean oils). The oil-to-slice ratio was 2:1. After frying, the slices were allowed to be air cooled for two minutes prior to analysis. For performing the analysis, each of the abovementioned batches was divided into two groups: one group was analysed immediately after frying and the second group was chill-stored at 4ºC for three days and then analysed. RESULTS: After frying, the moisture content decreased while that of fat increased. Fatty acid composition of the slices is affected by type of frying oil. Frying increased the omega-6-to-omega-3 (n-6:n-3) fatty acid ratio while decreased Eicosapentaenoic Acid (C20:5 n-3) and Docosahexaenoic Acid (C22:6 n-3) contents. Proximate and fatty acid composition of raw slices did not change after chill storage. However, in fried- and chill-stored slices, Eicosapentaenoic Acid and Docosahexaenoic Acid contents decreased, while linoleic acid content increased. CONCLUSION: The fatty acid composition of the fried slices tended to resemble that of the frying oils, indicating fatty-acid equilibrium between oils and slices and, during chill storage, it is influenced by the type of frying oil. Slices fried with canola oil had omega-6-to-omega-3 ratios in the ranges recommended for human health.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Ann C. Skulas‐Ray ◽  
Penny M. Kris‐Etherton ◽  
Paul R. Wagner ◽  
William S. Harris ◽  
Lisa F. Groves ◽  
...  

Aquaculture ◽  
2020 ◽  
Vol 514 ◽  
pp. 734494 ◽  
Author(s):  
Siri S. Horn ◽  
Bente Ruyter ◽  
Theo H.E. Meuwissen ◽  
Hooman Moghadam ◽  
Borghild Hillestad ◽  
...  

2012 ◽  
Vol 32 (5) ◽  
pp. 465-478 ◽  
Author(s):  
Chenjing Yang ◽  
Cho Cho Aye ◽  
Xiaoxin Li ◽  
Angels Diaz Ramos ◽  
Antonio Zorzano ◽  
...  

Mitochondrial dysfunction has been associated with insulin resistance, obesity and diabetes. Hyperinsulinaemia and hyperlipidaemia are hallmarks of the insulin-resistant state. We sought to determine the contributions of high insulin and saturated fatty acid exposure to mitochondrial function and biogenesis in cultured myocytes. Differentiated C2C12 myotubes were left untreated or exposed to chronic high insulin or high palmitate. Mitochondrial function was determined assessing: oxygen consumption, mitochondrial membrane potential, ATP content and ROS (reactive oxygen species) production. We also determined the expression of several mitochondrial genes. Chronic insulin treatment of myotubes caused insulin resistance with reduced PI3K (phosphoinositide 3-kinase) and ERK (extracellular-signal-regulated kinase) signalling. Insulin treatment increased oxygen consumption but reduced mitochondrial membrane potential and ROS production. ATP cellular levels were maintained through an increased glycolytic rate. The expression of mitochondrial OXPHOS (oxidative phosphorylation) subunits or Mfn-2 (mitofusin 2) were not significantly altered in comparison with untreated cells, whereas expression of PGC-1α (peroxisome-proliferator-activated receptor γ co-activator-1α) and UCPs (uncoupling proteins) were reduced. In contrast, saturated fatty acid exposure caused insulin resistance, reducing PI3K (phosphoinositide 3-kinase) and ERK (extracellular-signal-regulated kinase) activation while increasing activation of stress kinases JNK (c-Jun N-terminal kinase) and p38. Fatty acids reduced oxygen consumption and mitochondrial membrane potential while up-regulating the expression of mitochondrial ETC (electron chain complex) protein subunits and UCP proteins. Mfn-2 expression was not modified by palmitate. Palmitate-treated cells also showed a reduced glycolytic rate. Taken together, our findings indicate that chronic insulin and fatty acid-induced insulin resistance differentially affect mitochondrial function. In both conditions, cells were able to maintain ATP levels despite the loss of membrane potential; however, different protein expression suggests different adaptation mechanisms.


2011 ◽  
Vol 59 (6) ◽  
pp. 369 ◽  
Author(s):  
A. J. Hulbert ◽  
Sarah K. Abbott

There are four types of fatty acids but only two types are essential nutritional requirements for many animals. These are the omega-6 polyunsaturated fatty acids (n-6 PUFA) and the omega-3 polyunsaturated fatty acids (n-3 PUFA) and because they cannot be converted to one another they are separate essential dietary requirements. They are only required in small amounts in the diet and their biological importance stems largely from their role as constituents of membrane lipids. They are synthesised by plants and, as a generalisation, green leaves are the source of n-3 PUFA while seeds are the source of n-6 PUFA in the food chain. While the fatty acid composition of storage fats (triglycerides) is strongly influenced by dietary fatty acid composition, this is not the case for membrane fats. The fatty acid composition of membrane lipids is relatively unresponsive to dietary fatty acid composition, although n-3 PUFA and n-6 PUFA can substitute for each in membrane lipids to some extent. Membrane fatty acid composition appears to be regulated and specific for different species. The role of essential fats in the diet of animals on (1) basal metabolic rate, (2) thermoregulation, (3) maximum longevity, and (4) exercise performance is discussed.


2015 ◽  
Vol 39 (4) ◽  
pp. 372-380 ◽  
Author(s):  
Gisele Teixeira de Souza Sora ◽  
Aloisio Henrique Pereira Souza ◽  
Acácio Antônio Ferreira Zielinski ◽  
Charles Windson Isidoro Haminiuk ◽  
Makoto Matsushita ◽  
...  

Fatty acids have a great metabolic and structural importance. Evaluation of fatty acid composition of peppers is still incomplete. Pulps and seeds from six varieties of the genus Capsicum were evaluated in this work with respect to their contents in fatty acids. A total of 25 different fatty acids, including some with odd number of carbons were identified in the samples. The most abundant fatty acids were palmitic (16:0), oleic (18:1n-9) and linoleic (18:2n-6) acids. The polyunsaturated:saturated fatty acid (PUFA/SFA) ratios for all peppers were high due to the elevated amounts of polyunsaturated acids, particularly linoleic acid. In the pulps, the omega-6/omega-3 ratios ranging from 1.28 to 4.33, were relatively adequate if one considers that ratios between 0.25 and 1.0 in the human diet are regarded as highly appropriate. In the seeds, the levels of omega-3 were very low whereas the levels of omega-6 were high, leading to very inadequate omega-6/omega-3 ratios ranging from 74.2 to 279.6. Principal component analysis (PCA) explained 93.49% of the total variance of the data. Considering the PUFA/SFA ratio and omega-6/omega-3 ratio, our data suggest that, among the peppers of the genus Capsicum evaluated in this work, the bell pepper and orange habanero pepper present the best nutritional characteristics concerning fatty acid composition.


Sign in / Sign up

Export Citation Format

Share Document